
A Mobility-Transparent Model for Consistency
PeStO

<http://www.diku.dk/distlab/amigos/pesto.html>

Michael G. Sørensen
{mgsj@diku.dk}

<http://www.diku.dk/students/mgsj/>

Master Thesis

Department of Computer Science
University of Copenhagen

DIKU
<http://www.diku.dk/>

Written Work no. 96-3-7

Not all those who wander are lost;
– J.R.R. Tolkien (Lord of the Rings)

January 26, 2000

Abstract

The design, implementation, and evaluation of a mobility-transparent model
for consistency is presented.

A distributed file system with support for mobile computing has been
designed and implemented. The system enables applications to utilize any
desired level of optimism or pessimism and to adapt their behaviour according
to different communication characteristics or user demands. Guidelines for
extending the system with a transactional facility are also given.

The distributed file system is based on a model that uses time as a con-
sistency measure. Using such a scheme the applications can relax their con-
sistency requirements as the quality of communication decreases in order to
achieve higher availability or reduce cost, and strengthen them again when
suited.

The implementation has introduced a small, but acceptable, overhead.
The system has some minor flaws, but it is my belief that the implementation
has proven the feasibility of the system.

“The design of a worldwide, fully transparent distributed file sys-
tem for simultaneous use by millions of mobile and frequently
disconnected users is left as an exercise for the reader.”

– Andrew S. Tanenbaum (Distributed Operating Systems)

Keywords: mobile computing, distributed file systems, client/server,
communication, adaptation, availability, consistency, file sharing semantics,
replica control strategies, optimism, pessimism, caching, read and write op-
erations, locks, conflict detection and resolution, transactions.

Preface

This is the Master Thesis of Michael G. Sørensen. It was written as part of
the AMIGOS1 (Advanced Mobile Integration in General Operating Systems)
project at DIKU, Department of Computer Science, University of Copen-
hagen. The subproject was nicknamed PeStO for PEssimistic, STrict, and
Optimistic.

Prerequisites: The reader is assumed to have knowledge of distributed
operating systems corresponding to having read and understood [52, Ch.1-
6], e.g., by following the course “Distributed Operating Systems” at DIKU.

The basic ideas of the presented model for consistency stem from the
report “Transactions in Mobile Computing” [34], which I recommend is read
beforehand, as much of the material in it will be referred to rather than
repeated in this report.

A Model for Multi-Level Consistency: During the writing phase of this
report, I wrote an article [51] and submitted it for the OOPSLA’96 Workshop
on Object Replication and Mobile Computing (ORMC’96). It was accepted
and therefore I attended the workshop (in San José, California on the 7.
November 1996) and did a presentation. I consider the writing of the article
and the presentation as a part of my Master Thesis, and it is therefore the
reader will find a copy of the article “attached”.

This report (DIKU 96-3-7) is available for download in gzip’ed postscript
format: <ftp://ftp.diku.dk/diku/distlab/amigos/diku-96-3-7.ps.gz>. And
the attached article as: <ftp://ftp.diku.dk/diku/distlab/ormc96/o12.ps.gz>.

All the systems mentioned herein are trademarks of their respective companies and owners.

1AMIGOS: <http://www.diku.dk/distlab/amigos/>

I

II

Acknowledgements: Birger Andersen for pushing me forward, but not over
the edge! Jørgen Sværke Hansen & Torben Reich for letting me “steal” a
number of items from their TACO Project.2

BIG THANKS GO TO

Christina
for her enormous patience

2TACO: <http://www.diku.dk/distlab/amigos/taco.html>

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Challenges . 3

1.2.1 Mobile Computing . 3
1.2.2 AMIGOS . 4

A Mobility-Transparent Model 5
Transparent Communication 6

1.3 A Distributed File System . 7
1.3.1 Environment . 7
1.3.2 A Distributed File Service 7

1.4 Transactions in Mobile Computing 8
1.5 Goals . 9

1.5.1 Design . 9
1.5.2 Implementation . 9
1.5.3 Performance . 10
1.5.4 Evaluation . 10
1.5.5 Restrictions . 11

1.6 Overview . 11
1.6.1 Terminology . 11
1.6.2 Contents . 12

2 Mobile Computing 13
2.1 Mobile Computers . 13

2.1.1 Performance . 14
2.1.2 Stable Storage . 15
2.1.3 Vulnerability . 16
2.1.4 Screen & Keyboard . 16
2.1.5 Power Supply . 16

2.2 Means of Communication . 17
2.2.1 Connected . 18
2.2.2 Weakly Connected . 18

i

CONTENTS ii

2.2.3 Disconnected . 19
2.2.4 Communication State Transitions 20

2.3 Mobility . 22
2.4 Summary . 23

3 Replica Control 25
3.1 File Usage . 25

3.1.1 Classification of Files 25
3.1.2 Operations on Files . 27
3.1.3 Operations on Directories 28
3.1.4 File Sharing . 29
3.1.5 File Sizes and Types 30
3.1.6 File Sharing Semantics 30

3.2 Granularity of Replication . 31
3.3 Replica Control Strategies . 31

3.3.1 Pessimistic . 31
3.3.2 Strict . 32
3.3.3 Optimistic . 32
3.3.4 Multi-Level Consistency 33
3.3.5 Conflict Detection . 33
3.3.6 Conflict Resolution . 34

3.4 Replication transparency . 34
3.5 Synchronization . 35
3.6 Caching . 36
3.7 Summary . 38

4 Transactions 39
4.1 Properties of Transactions . 39

4.1.1 Consistency . 40
Operation Level Consistency 40
System Level Consistency 41

4.1.2 Isolation . 42
Isolation-Only Transactions 44
Serial Transactions 44

4.1.3 Durability . 45
4.1.4 Nesting . 46

4.2 Concurrency Control . 46
4.2.1 Optimistic Concurrency Control 47
4.2.2 Boundaries of Transactions 47

4.3 Summary . 48

CONTENTS iii

5 The Model 50
5.1 Reading . 52

5.1.1 Pessimistic Reading . 52
5.1.2 Optimistic Reading . 53
5.1.3 Strict Reading . 53
5.1.4 The Consistency Time Bound 53

5.2 Writing . 55
5.3 Creating & Deleting . 57
5.4 Locking . 57
5.5 Conflicts . 61

5.5.1 Read/Write Conflicts 62
5.5.2 Write/Write Conflicts 65

5.6 Other Features . 65
5.6.1 Temporary Files . 65
5.6.2 Synchronization . 65
5.6.3 Status . 66
5.6.4 More Primitives . 66

5.7 Primitives . 68
5.7.1 File Primitives . 68
5.7.2 System Settings & Primitives 69
5.7.3 Transaction Primitives 70

5.8 Existing Applications . 71

6 The Implementation 74
6.1 System Requirements . 74

6.1.1 Test Environment . 74
6.1.2 Portability . 75

6.2 Fault-Tolerance . 75
6.3 Client/Server Communication 76

6.3.1 Communication with TACO 76
6.4 Overview of Files and Subroutines 80
6.5 Program Flow . 84
6.6 Availability . 84

7 Test & Evaluation 85
7.1 Tests . 85
7.2 Results . 89
7.3 Evaluation . 90

7.3.1 Problems with PeStO 91
7.3.2 Problems with TACO 92

CONTENTS iv

8 Conclusions 93
8.1 Contributions . 93
8.2 Fulfillment of Goals . 93
8.3 Future Work . 94
8.4 Conclusion . 95
8.5 Postscriptum . 95

A Program 97
A.1 Server: pserver.c . 97
A.2 Client: pclient.h . 102

B Examples 112
Bank Account . 112
make . 115
Mail Reader . 115
Blackboard . 116

C Flow Diagrams 118

D Figures from Chapter 5 119

References 120

Index 127

Figures

1.1 System overview . 8

2.1 Different states . 20

3.1 Classification of files . 26
3.2 Cristian’s algorithm (running on the client) 36

4.1 Non-isolated database transactions 43
4.2 A new algorithm for optimistic concurrency control 48

5.1 Consistency Time Bound (CTB) 54
5.2 Modification Time Bound (MTB) 56
5.3 Expiration Time Bound (ETB) 61
5.4 No read/write conflict . 63
5.5 Undetectable read/write conflict 63
5.6 Detectable read/write conflict 64
5.7 Synchronization . 66
5.8 Example use of status primitives 67
5.9 Example use of transactions (1) 72
5.10 Example use of transactions (2) 73

6.1 PeStO-TACO daemon (1) . 77
6.2 PeStO-TACO daemon (2) . 78
6.3 PeStO-TACO communication 79
6.4 Data flow . 80
6.5 Include files . 81

8.1 An alternative to Mobile Computing 96

v

Tables

2.1 Memory/CPU . 15
2.2 Networks . 17
2.3 Characteristics of computer hardware 23
2.4 Characteristics of network technology 24
2.5 Modes of operation (states) and their characteristics 24

3.1 Times . 36

4.1 Different stages for execution and commit of a transaction . . 45
4.2 Different stages for rollback of a transaction 45

5.1 Consistency times . 51
5.2 Expiration times . 52
5.3 Time bounds . 52
5.4 Performing a read lock . 59
5.5 Performing a write lock . 59
5.6 Performing a read unlock . 60
5.7 Performing a write unlock . 60
5.8 Transaction status values . 71

7.1 Files used for testing . 88
7.2 Running times (in seconds) for reading 89
7.3 Running times (in seconds) for writing 90

vi

Chapter 1

Introduction

This thesis presents the design and implementation of a distributed file ser-
vice, providing a new set of file operation primitives that enables applications
to adapt to the different communication characteristics experienced by mo-
bile computers.

Furthermore, the possibility of extending this new file service with a trans-
actional facility will be discussed.

In the following sections, I present the motivation, the challenges, the
goals, and an overview of this thesis.

1.1 Motivation

The advent of mobile computers and the growing popularity of these have
inspired many research efforts to integrate and/or support mobile computers
within existing distributed systems or even built new ones. The majority of
these systems, such as Bayou [53], Coda [22], [42], D-NFS [7], Ficus [13],1

and Little Work (disconnected operation for AFS) [14], [15], have a priori
decided to use optimistic replica control strategies to achieve high availability
for support of mobile computing, even if conflicting updates are unavoidable
and use of stale data possible. On the other hand, (as a bit of an outsider)
MIo-NFS [9] uses a pessimistic replica control strategy in order to avoid con-
flicts, even if this is overly restrictive. Hence, MIo-NFS cannot be expected
to have a high level of availability.

1Ficus uses optimistic replication in order to scale well (world-wide), but has also found
this to be useful in connection with the use of mobile computers.

1

CHAPTER 1. INTRODUCTION 2

Since some files (or jobs) are more important than others (to users) and
since applications have different file access patterns (i.e., some exhibit higher
than average level of write-sharing [28]), why should they be forced to perform
perhaps less than optimal due to the shortcomings of either optimistic or
pessimistic replication? What if applications themselves could decide on a
replication strategy and change it dynamically, e.g., due to change in quality
or cost of communication or on demand if a user for some reason wishes
to override “default” behaviour? In other words, what if applications could
adapt their consistency requirements or consistency demands according to
the current state of the environment? Adaptation, whether on system or
application level (or both), has already been recognized as an important [11]
or even essential [43] capability of mobile clients (as members of distributed
system).

Transactions can provide mobile computers with an easy-to-use and easy-
to-grasp functionality for ensuring correctness or improving consistency, e.g.,
by detecting read-write inconsistencies [44] (reacting to the use of stale
data [16]). Traditional transactions in distributed systems are atomic, con-
sistent, isolated, and durable, but upholding all of these (ACID) properties
in mobile environments may not be a viable approach (being overly restric-
tive [34] or imposing unbearable overhead [40]). A new transactional model
that has relaxed some of the four ACID properties is desirable, but in such
a way that the functionality maintains its ease of use.

Again, as with replica control strategies, it would make sense to allow
applications to adapt to their current environment by providing transactions
with different guaranteed levels of consistency.

Thus, the two overall goals are to support mobile computing by:

1. Enabling applications at all times to adapt to different communication
characteristics.

2. Providing a transactional facility that can be used effectively and effi-
ciently on mobile computers.

CHAPTER 1. INTRODUCTION 3

1.2 Challenges

This section includes a short summary of the challenges faced when dealing
with mobile computers. The AMIGOS project will be presented along with
descriptions of two recent works that are of special interest for this thesis.

1.2.1 Mobile Computing

What makes mobile computing, that is, the use of mobile computers in con-
nection with distributed systems, so different from traditional distributed
computing? A detailed discussion of this issue can be found in Chapter 2,
but shortly summarized using the words of [41]:

“. . . , there are relative differences between mobile and stationary
computers that will always exist and that are not the result of
shortcomings of current technology:

• Mobile computers are resource-poor compared to stationary
computers. Due to constraints on weight, size and power
consumption, mobile computers will always be inferior to
stationary computers in multiple respects such as processing
power and storage capacity. . . .

• Mobile computers are more prone to loss, damage, and theft
than stationary computers. . . .

• Mobile computers must operate under a much wider range
of networking conditions than stationary ones. Stationary
computers are generally connected to a wired network that
has reliable and well-defined characteristics. A mobile one
on the other hand must make do with whatever wired or
wireless connectivity is available at its current location, which
might often be none at all.”

These considerations argue for an extension of the traditional client/server
model [44]:

“The relative poverty of mobile elements as well as their lower
trust and robustness argues for reliance on static servers. But
the need to cope with unreliable and low-performance networks,
as well as the need to be sensitive to power consumption argues
for self-reliance. . . . Any viable approach to mobile computing
must strike a balance between these concerns.”

CHAPTER 1. INTRODUCTION 4

One cannot argue with the above observations. They have become well
established facts conceived through empirical study of experimental systems
such as Coda [42], Ficus [13], and Little Work [15]. However I find that
one important factor, at least, is left unsaid—maybe its to obvious!

• Mobile computers are normally in use by a single person at a time.
Mobile computers are at current state not powerful enough to support
use by multiple users at a time, but even if they were, it would seem
unlikely that when out of office (roaming the country) that more than a
single user (i.e., the one who carries the computer around) would logon
to and use the machine.

I will return to the implications of this simple observation (see also Sec-
tion 2.3).

1.2.2 AMIGOS

As mentioned in the preface, this thesis is part of the Advanced Mobile In-
tegration of General Operating Systems (AMIGOS) project which aims to
design and implement extensions for standard operating systems. These ex-
tensions should transparently integrate mobile computers with stationary
computers, regardless of operating systems and location of the mobile com-
puters [1].

The vision of the AMIGOS project is:

“. . . to make the mobile office a reality without making a mobile
computer more complicated to use than a stationary computer
on a desk.”

The AMIGOS project consists of five phases:

• A transparent communication layer, which is an extension of TCP/IP
with support for disconnected operation, and which—based on availa-
bility—transparently selects either an Ethernet, a telephone line, or a
cellular phone line.

• A NFS caching layer, where the mobile host maintains a large (10Mb-
100Mb) cache of files, to enable the user to access files while discon-
nected or semi-connected.

• A re-executable transaction scheme with support for semi-connected op-
erations. This differs from traditional transactions; the mobile host—
while disconnected—may be unable to obtain locks for an extended
period of time.

CHAPTER 1. INTRODUCTION 5

• An object-oriented resource management system, in which all resources
of the distributed system will be made available as objects. These
objects may be used for semi-connected operation by extending the
transaction scheme to cover these objects.

• A complete object-oriented environment, where distributed object-ori-
ented languages like Emerald and Ellie will be extended with support
for transactions.

This thesis belongs mainly to the second phase, continuing the investi-
gations of transactions in mobile computing [34] as part of phase three and
utilizing the TACO layer [11] developed as part of the first phase. These two
works will be presented in the following subsections.

A Mobility-Transparent Model

The model for consistency and availability presented in this thesis stems
from the report “Transactions in Mobile Computing” [34]. The model—A
Mobility-Transparent Model for Consistency—is based on the use of time as a
consistency measure. This is done by associating time bounds with standard
file operations (e.g., read and write). The time bounds tell how high the
probability of inconsistency is allowed to be(come).

The basic rules for the model are:

• Weakened consistency should be limited to mobile clients operating
weakly connected or disconnected (see Section 2.2.2. & 2.2.3),

– Comment: An immediate consequence of this—since (fully) con-
nected clients should experience no degradation of consistency—is
that consistency should, if possible, be restored upon reconnection
(i.e., when going from disconnected or weakly connected to fully
connected).

• Connectivity and mobility should be concealed from users although
mechanisms to discover and influence the weakening of consistency
should be provided

– Comment: In my view this boils down to providing applications
with ways of adapting their consistency requirements to changes
in their environment or on demand.

A full description of the (final) model will be given in Chapter 5, so even
if seaming a bit abrupt, I will defer from discussing it any further at this
point.

CHAPTER 1. INTRODUCTION 6

Transactions for mobile computing has also been investigated coming to
the conclusion that a transactional facility based on the proposed model is not
at all an easy task. The main problems arise from the facts that the mobile
client may be disconnected at the time when a transaction is executed (on
that client) and that consistency cannot be fully guaranteed before the time
of commit (on the server).

Traditional transactions are running until they are either aborted or com-
mitted. Transactions for mobile computing need to have an intermediate state
of pending, i.e., they are running or pending (seemingly committed on the
client) until they are aborted or committed on the server.

I will look further into these matters in Chapter 4.

Transparent Communication

As part of the AMIGOS project, (in the report “Semi-Connected TCP/IP in
a Mobile Computing Environment” [11]) there has recently been developed a
transparent communication layer—the TACO (Transparent AMIGOS COm-
munication) layer—that hides the details on which communication media to
use (and how to use it) from applications.

Furthermore, the work has resulted in support for system and application
level adaptation to changes in the environment so that available bandwidth
may be used effectively. System level support is supported through means
of specifying link requirements2 of a given type of communication using sys-
tem calls. These specifications are used by the underlying system (i.e., the
communication layer) when scheduling communication that effectively uses
available bandwidth. Application level adaptation is provided through sys-
tem calls, hereby an application can request notification from the commu-
nication layer, when changes occur that affect the state of communication.

2Link requirements are given through Quality of Service (QoS) parameters.

CHAPTER 1. INTRODUCTION 7

1.3 A Distributed File System

In the following sections I will define (and confine) what kind of mobile
computing system—the environment and the services—I am working on.

1.3.1 Environment

The environment in this project consists of a single (trusted) stationary file
server that services multiple (untrusted) mobile clients. The types of mobile
clients supported are discussed in Section 2.1. The service provided is access
to shared data (files). The server can be considered as the true home of
the shared data and the mobile clients as caching sites as in the traditional
client/server model.3

In my environment, a mobile computer can be either connected to (the
same network as) the server or disconnected. The connections can be by use
of a variety of different technologies, such as Ethernet, dial-up telephone line,
dial-up wireless communication, see Figure 1.1. Hence, the communication
bandwidth may vary substantially as does the cost of using this bandwidth,
see Section 2.2.

The server should have no explicit support for stationary workstations,
but of course, they can be considered as odd cases of mobile clients that
never move and are always (fully) connected, see Section 2.2.1.

The mobile clients are in contact with the server on a regular basis, i.e.,
they do not stay disconnected forever4 and can be said to be permanent
members of the distributed system in which the server resides. The server
does not support “visitors”, i.e., mobile clients that do not fall into the
category above, and for the sake of simplicity assumes that they do not exist
(so that security concerns can be ignored).

1.3.2 A Distributed File Service

The main work of this thesis is design and implementation of a file system
with support for mobile computing. This will be done by providing a new set
of file operation primitives that provide applications with access to shared
files using any desired level of optimism or pessimism.

3The similarities with the traditional client/server model end when the mobile clients
are no longer (fully) connected, and varying degrees of self-reliance are needed.

4Except in the case where a client for some reason is no longer used (because it is
replaced by a newer and better one or simply refuses to work any longer)—but that is a
special case that requires special attention anyway!

CHAPTER 1. INTRODUCTION 8

Figure 1.1: System overview

Precise definitions of design, implementation, and performance goals are
given in Section 1.5.

1.4 Transactions in Mobile Computing

The traditional properties of transactions: atomicity, consistency, isolation,
and durability (ACID) need to be re-defined, extended, weakened or maybe
even abandoned in order to provide an efficient transactional facility for mo-
bile computing.

I will turn my attention towards transactions in (relational) database
systems (see, e.g., [4], [36]), since that is where they come from in the first
place. I hope to encounter (stumble upon) ideas for a new and improved
transactional foundation for mobile computing. Even if some of the ACID
properties need to be relaxed or abandoned, transactions should still be an
easy-to-use and easy-to-grasp mechanism for achieving higher consistency.

To lay down useful guidelines for a future implementation of an efficient
transactional facility on top of the provided file system will be the main
objective of the discussion.

CHAPTER 1. INTRODUCTION 9

1.5 Goals

“Always make more promises,
than you can break”
– D:A:D (Unowned)

In the following subsections specific design, implementation, and performance
goals will be given.

1.5.1 Design

The three main goals for the design of the distributed file system are (in
order of priority):

1. It should enable applications to utilize any desired level of optimism or
pessimism,

2. it should enable applications to adapt their behaviour according to dif-
ferent communication characteristics (or user demands), and

3. it should be easy to port existing application to use the new file system.

I believe that the first goal can be achieved by basing the implementation
on the model proposed in [34], and the second goal by utilizing and refining
the facilities provided by the TACO layer [11]. The third goal will be achieved
by designing a well-defined, easy-to-use, and easy-to-understand (simple)
interface to the services provided by the new file system.

By reaching these goals I hope to be able to design a distributed file
system that is well suited for mobile computing by being simple, yet flexible
and powerful.

1.5.2 Implementation

Communication:
The services will be provided via specialized file operations supported by
software5 that is to be linked with (new) applications wishing to communicate
with the server. For the purpose of communication, sockets will be used.

Use of TACO:
The system level support for adaptation in TACO enables applications to
set Quality of Service (QoS) parameters for each socket connection using
simple system calls.

5A client stub implemented as a C Runtime Library

CHAPTER 1. INTRODUCTION 10

The application level support for adaptation in TACO comes in form
of API support for link handling. By choosing an implementation using
sockets in C, it is made possible to use the facilities for adaptation provided
by TACO.

The goal of the implementation will be to prove the feasibility and via-
bility of the design. I believe that the environment described in Section 1.3.1
and the choice of using sockets for communication purposes provides an
adequate setting for achieving this goal.

1.5.3 Performance

The new set of file operation primitives will require additional administration
(especially on the client side) compared to the corresponding “ordinary” file
operation primitives. The overhead introduced by this administration should
be negligible.

Furthermore, performance degradation should only occur when unavoid-
able, e.g., due to weakened connectivity. In other words, fully connected
clients should not be punished; they should not experience any non-negligible
degradation of performance.

1.5.4 Evaluation

I will evaluate the system’s fully connected operation by performing time
measurements on operations performed by the same fully connected notebook
computer using only the TACO layer and using the new file system (on
top of TACO) and comparing these. If my performance goals are to be
fulfilled, the result should show no more overhead than can be explained
by the implementation of the server and client software (using the socket
facilities) on top of the existing system with TACO.

The system’s weakly connected operation will be evaluated by performing
the same set of operations as above with a known and stable amount of
available bandwidth. The running times should be comparable to those of
fully connected operation when the lower bandwidth (and the higher latency)
is taken into account.

CHAPTER 1. INTRODUCTION 11

1.5.5 Restrictions

“Where there’s a will;
there’s a won’t...”

– D:A:D (Unowned)

I will restrict my self from migration issues. The mobile clients will (must)
contact the server, not the other way around, i.e., I will ignore the fact that
mobile computers may wish to migrate between different networks. Readers
interested in this are referred to [11]. I will not take any considerations with
regards to security (e.g., authentication and data encryption).

This thesis is a continuation of the work presented in [34]. To avoid
unnecessary repetition of some of the material, I will skip in-depth treatment
of the following issues:

• Serializability-based synchronization (e.g., Two-phase locking, Opti-
mistic concurrency control, and Timestamps).

• Atomicity and recoverability (e.g., Stable storage, Logging, Shadowing,
and Two-phase commit).

• General description of distributed file systems (e.g., Network File Sys-
tem, Andrew File System, Little Work, and Coda).

• The role of a mobile host [in transaction processing] (e.g., Remote
terminal, Full-fledged server, and Preprocessing client).

For my own sake, and because my views differ slightly from those given
in [34], I will be repeating the parts about mobile-computing in general and
basic properties of transactions. Furthermore, I find it natural to include a
full description of the implemented model for consistency.

1.6 Overview

1.6.1 Terminology

Throughout the rest of this report I will use the term mobile computer to
mean portable computers in general, and the term mobile client to mean a
mobile computer used in connection with a distributed system, i.e., a mobile
computer that communicates (regularly) with one or more servers. In the
same way the terms stationary computer and stationary client are used.
Servers are assumed to be stationary.

CHAPTER 1. INTRODUCTION 12

1.6.2 Contents

The thesis is structured as follows:

• Chapter 1 contains the Introduction which I will assume you have just
read; otherwise do it!

• Chapter 2 is about Mobile Computing; the types of (mobile) computers
supported will be determined and the characteristics of mobile comput-
ing given.

• Chapter 3 is a general discussion of the issues concerning replica con-
trol in connection with caching of files. Issues touched upon include
file access patterns, granularity, transparency, replica control strategies
(pessimistic, strict, and optimistic), synchronization, and file caching
strategies.

• Chapter 4 is about Transactions. Basic properties of transactions and
concurrency control will be discussed.

• Chapter 5 contains a full description of The Model, i.e., a file service
specification for the system.

• Chapter 6 contains Implementation issues.

• Chapter 7 gives a description of the tests performed in order to evaluate
the system with respects to usability and performance, and of course,
a discussion of what the results of these tests tell us is included.

• Chapter 8 is the Conclusion. As with all thesises the conclusion comes
last telling how well it all went. References to related work and ideas
for future work will also be given.

Chapter 2 to Chapter 4 each finishes with a summary.

The interested reader can find a listing of excerpts from the source code in
Appendix A and detailed descriptions of the examples used within the report
in Appendix B. Appendix C contains flow diagrams for selected parts of the
client software, and finally Appendix D contains Figures 5.4, 5.5, and 5.6
from Chapter 5 in full sizes for better viewing.

Chapter 2

Mobile Computing

The term mobile computing is used in connection with a wide range of dif-
ferent computer environments (and other systems), see, e.g., [24].

In this chapter I will determine the type of computers supported. Fur-
thermore, characteristics of mobile computing will be given with emphasis
on special considerations to be taken when dealing with mobile computers,
i.e., where they differ (significantly) from “stationary” computers.

2.1 Mobile Computers

CELCUS ULT RA POSSE NEMO OBLIGAT UR

In my environment mobile computers should be self-contained, i.e., they
should be fully functional computers with their own operating system (e.g.,
Windows95, OS/2, or Linux) and applications—allowing the user to work
independently from other machines (e.g., servers). In my particular case the
operating system chosen is Linux, since it is currently in use on the mobile
computers used in connection with the AMIGOS project, and it has sockets.
In the long run any operating system providing a socket abstraction (in C),1

so in this sense the mobile computers supported are heterogeneous.
In Bayou [53] the mobile computers must run some sort of Posix compliant

operating system (actually, it could run in the same setting as mine) which
confines the use to some sort of UNIX-clone.

In Coda [22], [42] the mobile clients are not allowed to be heterogeneous,
in fact, they do not even come with their own operating system, thus making

1It could, I have been told, equally well have been Windows and winsockets, i.e., the
socket facility provided with the former, but I found it best (at first, anyway) to stick
with the existing systems.

13

CHAPTER 2. MOBILE COMPUTING 14

it necessary to cache system files on clients in order for them to work during
periods of disconnection from the server(s). Personally, I would find it a bit
absurd (and terribly annoying), if the machine I was using, stopped working
for the lack of some obscure system file that I have never heard of. This
problem can be tricky to handle2 and even nearly impossible [25].

The people behind the Seer [26] predictive caching system (an extension
to Ficus) also caches system files (i.e., the mobile clients are not heteroge-
neous), and they have found that “interrelationships among programs are
complex and deliberately hidden”, and therefore users cannot be expected to
provide accurate specifications of critical files to cache.

I expect that the need to track down file usage as in Coda (by use of a
help utility) or as with Seer (by constantly logging file references) is avoided
altogether in my system because all (necessary) system files will be available
on the mobile clients as they are self-contained, i.e., come with their own
operating systems.

As another part of the AMIGOS project a system MIo-NFS [9] (Mobile
Integration of NFS) that integrates mobile computing with NFS has been
developed. That system is also heterogeneous in the sense that the clients
only have to provide NFS—and nowadays you can even get NFS for PCs [49].

Everybody can agree on the fact that a mobile computer should be small,
light and at least to some extent handy. Making them that way necessarily
means that they become inferior to stationary workstations or desktops in
terms of processing power (CPU & RAM), storage capacity (harddisk), and
user interface (screen & keyboard). These factors as well as the question of
limited power supply will be discussed in the following subsections.

2.1.1 Performance

The vision of the AMIGOS project is [1]:

“. . . to make the mobile office a reality without making a mobile
computer more complicated to use than a stationary computer
on a desk.”

This could also be stated as [24]:

“. . . mobile computers should be a substitute for the stationary
computer at their office.”

2In Coda [42] they have even developed a special spy program to track down use of
files during a session.

CHAPTER 2. MOBILE COMPUTING 15

In terms of computing power this implicates that as a minimum the mobile
computers should be comparable to the desktops which (in my view) rules out
PDAs (Personal Digital Assistants) and most palmtops, and leaves me with
notebooks (or laptops). In other words, I only wish to support the types of
mobile computers that can be roughly characterized as portable workstations
in [41]. I find the notebooks you can buy today to be adequate,3 see Table 2.1.

Table 2.1: Memory/CPU
Harddisk Memory Machine (CPU)

>1 Gb 100 Mb Alpha or vector proc.
1 Gb 32 Mb High-end Pentium Desktop
1 Gb 16 Mb High-end Pentium Notebook

500 Mb 16 Mb High-end i486 Notebook (or desktop)
250 Mb 8 Mb Low-end i486 Notebook (or desktop)

High-end i386
150 Mb 8 Mb High-end i486 Subnotebook
60 Mb 4 Mb Low-end i386 Subnotebook
20 Mb 2 Mb i186 Subnotebook

- 2 Mb i186 Palmtop (or PDA)
(adapted from [2])

2.1.2 Stable Storage

At DIKU users (such as myself) normally have a home directory quota of
8Mb. Some privileged users have been granted additional 20Mb of disk space,
making it a total 28Mb. Space for additional file information and space for
file copies and/or logs are also required. A preliminary guess would be that
a 100Mb cache size would suffice for a disconnected (see 2.2.3) day’s work
for (normal) users, e.g., students at DIKU.

Coda has reported that in their environment a cache size of 25Mb for
one day of disconnected work or a cache size of 100Mb for a full week of
disconnected work should suffice [42]. It must be remembered that they also
cache system files requiring additional space compared to my environment.
On the other hand, system files are not modified (at least they should not be)
during disconnection, so they do not require additional space for file copies or

3In terms of computing power; the question of value for money is always debatable!

CHAPTER 2. MOBILE COMPUTING 16

logs. These facts suggest that the preliminary guess of 100 Mb is not totally
off.

Nowadays, an additional 100 Mb of harddisk does not cost a fortune, in
fact, harddisks with less than 500 Mb is seldom seen anymore.

The operating system and the usual applications that come with it also
requires some space (remember that the mobile computer should be self-
contained), but how much is entirely up to the user. For Linux it is some-
where between 100 Mb and 1 Gb depending on how much you need/want.
Anyway, I will not consider it a concern of mine; I am only concerned with
the available space for caching.

2.1.3 Vulnerability

Due to their portability (being carried around and everything) mobile com-
puters are more likely to be stolen and more vulnerable to loss or damage
than stationary computers [45]. With this in mind I hope it is clear why I
have already indicated that the mobile clients are “untrusted”, and why I
have chosen the server to be the true home of the shared data.

2.1.4 Screen & Keyboard

Modern notebooks that will cost you less than 20.000,- dkr. (except if you
buy an IBM) come with 10-11” colour screens with VGA graphics (640x480
pixels). Though slighty less than the 14-15” colour screens of a standard
PCs and somewhat less than the 19” (or more) screens of the X-Window
workstations at DIKU, I personally find it acceptable for any of the stan-
dard GUI-based window systems (e.g., Windows95, X-Windows for Linux,
or OS/2’s Workplace Shell).

I find the keyboards (with or without build-in trackball, trackpoint or ex-
ternal mouse) of today’s modern notebooks less acceptable than the screens,
but I guess that is a “price you have to pay” if you want something portable.

2.1.5 Power Supply

Notebooks rely on finite energy resources, namely the batteries. With this
in mind, any additional client processes introduced to enhance disconnected
operation should not be too demanding on the system. The main questions
are how far is there between power supplies and how much work will be done
when traveling from one to the other? Further investigation on this subject

CHAPTER 2. MOBILE COMPUTING 17

is beyond the scope of this report. I will leave that question to the users and
the applications.

2.2 Means of Communication

“Never underestimate the bandwidth
of a station wagon full of tapes.”

– Dr. Warren Jackson, Director, UTCS

The stationary workstations in the office are usually connected to the servers
through the LAN. The network is wire-based offering continuous, high band-
width communication. Mobile computers open other connections through the
telephone lines (wire-based dial-up using a modem) or using portable phones
(cellular dial-up using GSM). Examples of the latency and bandwidth of the
different networks are given in Table 2.2.

The telephone lines have lower bandwidth than the wire-based and you
normally have to pay some non-negligible fee [34] for the connection and/or
the communication time, but connections can be made from almost anywhere
(as long as there is a telephone wire to the house).

Wire-less communications, such as GSM, have even lower bandwidth than
telephone lines; they are usually more expensive to use, and are less reliable,
but in theory they can be used from anywhere (you do not even have to go
to the nearest phone (outlet)).

Table 2.2: Networks
Latency Bandwidth Network
0.5 msec. 600 Mbps ATM + FDDI (LAN)

150 Mbps ATM (LAN + country)
100 Mbps Fast Ethernet (LAN)

1 msec. 10 Mbps Ethernet (LAN)
2 Mbps Wireless Ethernet (LAN)

100 msec. Internet (interstate)
100 Kbps Serial line and V34 modem (country)

500 msec. 10 Kbps Radio based (GSM)
(adapted from [2])

In the following subsections I will clarify my use of the terms (fully) con-
nected , weakly connected, and disconnected .

CHAPTER 2. MOBILE COMPUTING 18

2.2.1 Connected

Definition 2.1 A computer is said to be (operating) fully connected or
merely connected with respect to a certain server when it is physically con-
nected to a wire-based network offering continuous, low latency, and high
bandwidth communication with the server.

This is normally the case with stationary workstations communicating
with servers through a LAN (e.g., an Ethernet or a Token Ring). These
connections are often provided through non-profitable organization—such as
schools—and are as such free of charge. Mobile computers that are connected
should experience the same level of network utilization (throughput).

The term strongly connected [33] is also used—as opposed to weakly con-
nected, see Section 2.2.2

Under these (ideal) network conditions it is feasible always to work on
the newest version of a file shipping updates rapidly over the network (when
needed). It is also feasible to avoid write/write conflicts, i.e., two simulta-
neous updates done locally (at two different locations, e.g., caches). This
can be done either by implementing UNIX file sharing semantics (all op-
erations are enforced a global time ordering and “reads” always return the
most recent value [52]) or by keeping track of who is doing what, e.g., using
session semantics and a refresh (checking to see if the cached version has not
been updated since last time) or a call-back mechanism (notifying holders
of cached copies if an update occurs). The possibilities are many (it has an
ongoing research field of its own), but it should be emphasized that this (in
some flavour or another) is what people—users of distributed (file) systems—
are accustomed to, i.e., write/write conflicts do not (or at least very seldom)
occur, consistency and availability is high.

2.2.2 Weakly Connected

“Get away from it all
but don’t distance yourself”

– Zenith notebook advertisement
(Computer World, No.19 (1996), p.23)

Definition 2.2 A computer is said to be (operating) weakly connected with
respect to a a certain server when it is able to communicate with the server
but is not fully connected.

CHAPTER 2. MOBILE COMPUTING 19

This definition covers a wide range of connections; wire-less ones such as
radio links (e.g., GSM) or infrared, and connections over a telephone network
(e.g., using a modem). The quality of communication can be anything from
acceptable to downright miserable. Communication is often characterized
as one with high latency, low and varying bandwidth. Furthermore, it is
expensive, due to the fact that use of these communication means often is
charged.

The terms partially connected [18], [19] and semi-connected [10] are often
used meaning the same.

Under these (often far from ideal) conditions consistency may have to be
weakened in order to increase availability—the communication is too slow,
unstable, and/or expensive to use for keeping the files up-to-date, i.e., con-
sistent with one another or even a single primary copy (as in my case).

Still, some communication may be preferred to none, since it gives the
possibility of validating the status of cached files—using short messages be-
tween the client and the server—and/or receiving or sending files in cases
where it is of great importance to have the newest versions or to make up-
dates visible to others as fast as possible.

2.2.3 Disconnected

Definition 2.3 A computer is said to be (operating) disconnected with re-
spect to a certain server when it is unable to communicate with the server.

This will be the case when there is no telephone service available and the
server is out-of-reach through any wire-less means of communication. In this
case self-reliance and self-dependence are necessities.

It has been suggested [38] that in the future it will become unnecessary
to discuss disconnected operation and that some sort of connection will al-
ways be and you should discuss different levels of connectivity and how to
switch between domains. On the other hand [54] disconnected operation will
undoubtedly always be cheaper (in terms of money, since it is free) than any
level of connectivity and thus be preferable to the more “expensive” weak
connections for (many) years to come—at least as long as the charges are
non-negligible.

CHAPTER 2. MOBILE COMPUTING 20

2.2.4 Communication State Transitions

Well, if the bandwidth is so much greater when connected than otherwise,
why do we even bother? Well, we want mobility and as they put in [24]:

“. . . with an increasing degree of mobility, the bandwidth of a
connection, and as a consequence the amount of data which can
be transferred in adequate time, decrease.”

Figure 2.1: Different states

Furthermore, disconnected operation may be the result of a network or
communication media failure that makes it impossible for the client to stay
in contact with the server—an unvoluntary disconnection. The transitions
between communication states are shown in Figure 2.1. The transitions be-
tween connected and weakly connected are not so common; normally the
user of the mobile computer makes a voluntary disconnection before travel-
ing from one place (domain) to another, and then reconnects on arrival. The
use of mobile computers is discussed in Section 2.3. As mentioned earlier,

CHAPTER 2. MOBILE COMPUTING 21

(see page 5) the mobile clients should experience no degradation of consis-
tency when fully connected, and thus consistency should be restored upon
reentering connected mode of operation.

CHAPTER 2. MOBILE COMPUTING 22

2.3 Mobility

A man’s computer is a man’s computer
mobility is but an illusion

– rewriting of an old Chinese proverb (about faith and life)

I will use this section to pin out what I believe to be the normal use of mobile
computers, i.e., who uses them, who wishes to use them, how and when do
they use them, and how and when do they wish to use them?

It is my conviction that mobile computers are personal belongings, i.e.,
they are owned and used by a single person. Today it is not that common to
own a mobile computer, but I believe that in a not too distant future this will
change and a lot of people will own a mobile computer (on the same scale as
people own a PC today). When you buy a mobile computer you know that
it is portable and that you might have to use it differently than a stationary
computer.

Users of mobile computers know that special attention must be given
to situations where they connect to or disconnect from a stationary system
and they are willing to do the extra effort it is to follow instructions when
doing so. Otherwise they would like to be able to “carry on as usual”, i.e.,
to do the same things on their notebooks, whether they are at the office
(and preferably fully connected), on the road (being disconnected or weakly
connected), or at home. It should be possible to use the mobile computer in
this way without regards to location. The only deviation from this is when
the cost is too high, i.e., when it is too expensive to contact the server to get
“that missing file”.

In Coda [42] they have a hoarding profile (a prioritized list of files to
cache during connected operation) pr. client. However that only makes sense
if the client is used (or is going to be used) by a single person. Otherwise
the hoarding profile should be a combination of preferences from multiple
individuals—I think not! So they make the same assumptions as I do, only
they forget to mention it; maybe it is too obvious.

In Bayou they store a full database on the clients, and that would enable
the client to support multiple users, but the developers [54] have plans for
partial replication (due to the limited size of client caches, and the poten-
tially growing size of the database) which means that they to must make
assumptions of the same sort.

CHAPTER 2. MOBILE COMPUTING 23

2.4 Summary

I will summarize this chapter by means of three tables that “say it all”.

Table 2.3 shows the difference in hardware for the different types of com-
puters; stationary ones (servers & workstations) and mobile ones (laptops &
palmtops). From the table it is obvious that processing power and storage
capacity (and to some extent also quality of user interface and reliability) is
traded for portability!

Table 2.3: Characteristics of computer hardware
Hardware

Stationary Mobile
Characteristic Server Workstation Laptop Palmtop
Processing power Maximum High Medium Low
Storage capacity Maximum High (*) Medium Low
Portability None Limited Slightly limited Full
User interface - Full Slightly limited Limited
Reliability High Medium Limited Limited

(adapted from [34])

(*): The stationary workstation itself can be diskless, but then it has access
to storage on or through a file server.

Table 2.4 shows the difference in quality of the different network tech-
nologies; fixed vs. dial-up wired or wire-less. Fixed is preferable to dial-up,
dial-up wired (e.g., using telephone lines) is preferable to dial-up wireless
(e.g., using GSM). In both cases the only gain is availability (i.e., mobility).4

Table 2.5 sums up the characteristics of the different modes of operation
(or communication states, if you prefer) encountered by mobile computers.
If I have not expressed myself clearly, this is what I have been trying to
communicate. I would like to emphasize that consistency is weakened (de-
layed writes, optimistic replication, and cache reliance) in order to increase
availability !

As a last remark I would like to point out once again that mobile computers
normally are used by a single person (at a time).

4Also initial cost, but I am talking about servicing mobile clients from an existing
distributed system—and hopefully I do not have to worry about financing it.

CHAPTER 2. MOBILE COMPUTING 24

Table 2.4: Characteristics of network technology
Network technology

Fixed Dial-up
LAN/WAN Wire Cellular

Operation Connected Weakly connected Weakly connected
Bandwidth High Medium Low
Reliability High Medium Low
Initial cost High Low Low
Latency Low Medium High
Cost to use Low Medium High
Topology Fixed, continuous Fixed, varying Dynamic
Available at Office outlet Phone outlet “Anywhere”

(adapted from [34])

Table 2.5: Modes of operation (states) and their characteristics
Connected Weakly Connected Disconnected

Mobility none medium or high (*) unlimited
Position fixed roaming
Method normal delayed writes & cache

operation optimistic replication reliance
Access continuous continuous none

or on demand
Bandwidth high bandwidth low bandwidth none

constant varying
Latency low latency high latency none
Link hard-wired serial link none

e.g., LAN e.g., phone line
or wire-less

Network (**) Ethernet PSTN or GSM none
Guaranteed
consistency normal weakened none

(*): In theory, high when using wireless; but in practice? When using a
phone line medium; you can find a phone outlet in almost every house but
you cannot move around during the connection.
(**): Only the network types considered in this project is listed, other pos-
sibilities exist, e.g., ATM, WaveLAN, Infrared, etc.

Chapter 3

Replica Control

In this chapter replica control issues, i.e., the matter of keeping replicas of a
file mutually consistent, will be dealt with in a (semi-)general manner. The
concerns that are specific to the actual model for consistency are dealt with
in Chapter 5.

3.1 File Usage

3.1.1 Classification of Files

Which files are of concern to a distributed file system when the clients come
with their own operating system and applications, i.e., are self-contained?
To answer this question I will divide files into three main categories: private,
shared, and foreign files. The private files are located on the client and are
used only by that client, e.g., operating system files. The foreign files are
located on the server or on other clients, but have no relevance to the client,
i.e., they are private to the other clients or the server. The shared files are
located on the server as primary copies and on the clients, in their caches,
as secondary copies. The shared files are those that a distributed file system
with self-contained clients should provide access to. Private and foreign files
are of no concern to the file system, except for size considerations:

• On the client:
cache size = storage size - size of private files.

• On the server (as seen from the client):
size of shared files <= storage size - size of foreign files.

When seen from the client’s point of view, a shared file (some version of
it) can be either cached or not cached. If a client creates a new file that is to

25

CHAPTER 3. REPLICA CONTROL 26

be shared then it is (at first) only located in that client’s cache, i.e., this is
a special case where there is no primary copy of the file (yet)! I will refer to
such a file as a new file. The classification of files can be seen in Figure 3.1.

Figure 3.1: Classification of files

A new file that is deleted before any version of it reaches the server can be
considered a temporary file. Contraversely, new files that reaches the server,
become cached, and are termed persistent when it is necessary to distinguish
them from temporary files.1

Applications are classified according to which files they use:

• Private applications use private files only.

• Foreign applications use foreign files only.

• Shared applications use at least one shared persistent file.

An application that uses temporary files but no persistent files should be
rewritten to be a private application. The file system should support shared
applications; the other applications should be supported by the operating
system and the ordinary (local) file system.

1Of course, private and foreign files can be divided into temporary or persistent files,
but since they are of no concern to the file system, there is no need to make the distinctions.

CHAPTER 3. REPLICA CONTROL 27

3.1.2 Operations on Files

Operations on files:

• Reading, writing, creating, and deleting: These are the basic operations
on files. In ANSI-C [21] a file is created implicitly when a non-existing
file is opened for reading. (Notice that creating and deleting files are
also operations on directories,see Section 3.1.3).

• Scanning (positioning): This can be thought of as reading a file until
a certain position is reached, without caring about what was read “on
the way there”.

• Opening and closing: In many systems, and especially those using ses-
sion semantics it is impossible to read from or write to a file without
having opened it (for reading or writing) first. Reads and writes to a
file may be performed locally (i.e., without the rest of the system being
able to notice it) before the file is closed.

• Linking and unlinking: UNIX synonyms for creating and deleting. The
files are not physically removed, but they are linked to or unlinked
from the directory structure, and cannot be referenced any more. The
space they previously occupied can be garbage collected. (Linking and
unlinking files are operations on directories, see Section 3.1.3).

• Updating: Synonym for reading and writing a file.

• Rewriting: A composite operation; rewrite <file> = if <file> exists
then delete <file>, create <file>, write <file>.

• Copying: A composite operation on two files; copy <file1> <file2> =
read <file1>, create <file1>, write <file2>.

• Renaming and moving: Composite operations on two (or more) files;
rename/move <file1> <file2> = read <file1>, create <file2>, write
<file2>, delete <file2>.

When a file is opened in (ANSI-)C [21] it must be specified whether the file
is to be read, rewritten (written), updated (read and written), or appended
to (which is just a particular form of updating; the file is “read” to the end
and written from there).

CHAPTER 3. REPLICA CONTROL 28

Possible conflicts

• Read/write conflicts occur when something wrong is written into a
file due to the reading of (a replica of) another file that is out-dated
(or stale). These conflicts are not easily detected, since the system
seldom knows how to relate reads and writes. It is easy to detect the
possible use of stale date, but not to relate it to following updates. For
this purpose transactions can be of great value; operations within the
same transaction are logically bound together, and the system knows
it because it has been told. The resolution of these conflicts are easy—
redo the reads and thereafter the writes based upon them.

• Write/write conflicts occur when the same (logical) file is being updated
concurrently in to different places (i.e., two replicas). These conflicts
are (relatively) easily detected; comparing (vector) timestamps or file
contents. The resolution of these conflicts are not always easy—which
updates are the “correct” ones?

3.1.3 Operations on Directories

Operations on directories:

• Inserting, removing, reading, creating, and deleting: The basic oper-
ations on directories. Reading is also called listing (the content of) a
directory. The entries in a directory are files (or just filenames). (Note,
that insert (into directory) is equal to create or link file, and remove
(from directory) is equal to delete or unlink file).

• Updating is used for either inserting and/or removing.

As with files, directories can be copied, renamed, and moved. Furthermore,
some operations can be combined to include both files and directories, e.g.,
when moving files from one directory into another.

Possible conflicts [27]

• Update/update conflicts: When different files have been created and/or
deleted from the same (logical) directory. This conflict is easily detected
and easily resolved; list the two directories to see if they have the same
entries, if they do not then perform the (same) operations on the other
directory both ways around.

CHAPTER 3. REPLICA CONTROL 29

• Name/name conflicts: When two logically different files have been cre-
ated using the same pathname. This is easily detected (but can be
confused for a write/write conflict); two inconsistent replicas.

• Rename/rename conflicts: When the same logical file has been renamed
to two different pathnames. This can only be detected if operations are
compared, and that would probably require logging of operations.

• Remove/update conflicts: When a file that has been updated in one
place has been removed (elsewhere). This is easily detected and the
resolution would probably be to keep the updated file, even if this may
come as a surprise to the person who initiated the remove.

I will not spend more energy on directory conflict resolution, and no such
thing has been implemented. The interested reader is referred to [27].

3.1.4 File Sharing

Studies of file usage patterns in universities using a UNIX system [52, Ch.5.2.1]
have shown that normally there is a low level of file sharing. The same stud-
ies have also shown that reads are much more common than writes. Putting
these two observations together leads to the conclusion that there is a low
level of write sharing! Furthermore, it seems that files often are read or
written in their entirety, i.e., reads and writes are sequential rather than
random.

At DIKU users have home directories, i.e., parts of the total directory
structure are devoted to a single user. Normal use of the system is for the
user to work alone on the files located in his or her home directory (and
subdirectories); no sharing. If the files from a user’s home directory are
cached on a mobile computer used (only) by that user, then there will be
no conflicts—it is unlikely that the user will be working on the same files
both on the mobile computer and on the DIKU system at the same time. In
Ficus [13] this behaviour is called a human write lock, and I think it is the
main reason for the success of mobile computing systems using optimistic
replica control strategies (see Section 3.3.3) such as Coda and Ficus.

So far, all studies of file usage patterns (at least to my knowledge) have
been on UNIX like environments in settings similar to that at universities. If
the same measurements where done in other environments then would they
yield the same results? Databases for instance will undoubtedly have higher
degrees of write sharing if the whole or big parts of (such as tablespaces) the
database are looked upon as one file—file types and granularity of replication

CHAPTER 3. REPLICA CONTROL 30

are discussed in Sections 3.1.5 and 3.2. Other environments with computer
supported cooperative work (CSCW) may also show higher degrees of write
sharing. What about users of mobile computers; do they automatically use
their computers in the same way they would use stationary workstations?

Coda’s assumptions are based on traces done on stationary workstations—
how is one to know that users do not change their behaviour when working
with their mobile computer? However, Coda has been successful [42].

In Bayou, on the other hand, it is a necessity that the applications are
written with mobility in mind, i.e., that they are adapted to this new envi-
ronment. Thus, it makes no assumptions with regards to the level of write
sharing, but it does make assumptions about the ability of application de-
velopers to foresee possible conflicts—which I personally find reasonable!

3.1.5 File Sizes and Types

The UNIX file traces referred to in the previous section have also shown that
the average file size is less than 10K, and that there are distinct file types
and classes.

I do not know if these traces are out-dated. Nowadays most systems have
some sorts of multimedia including high-resolution pictures (e.g., JPEGs &
GIFs with sizes from 20K to 300K) and movies (e.g., MPEGs & MOVs with
sizes from 500K to many MB), and what about a future with generalized
objects in an object oriented (OO) world?

Still, I will not make any efforts to support large files nor different types;
at first my system should be used for reading e-mails, newsgroups, working
on reports, etc. No multimedia for now!

The Odyssey system is an example of a system that tries to integrate
different consistency requirements according to the filetype using a notion of
fidelity, see [43].

3.1.6 File Sharing Semantics

There are different file sharing semantics to be chosen among [52] when de-
signing and implementing a distributed file system. The preferable one is
(always) UNIX semantics.2 In mobile computing this is simply not possible
if the clients are to operate on (i.e., do updates to) shared files during dis-
connected periods. Session semantics seems a reasonable choice, and then

2Or something reasonably close to, e.g., NFS.

CHAPTER 3. REPLICA CONTROL 31

maybe later extend it with transactions. I choose session semantics.
Note that it is opens and closes that are referred to in the following

sections (especially in Section 3.3).

3.2 Granularity of Replication

I will cache whole files, which makes sense, i.e., how would you feel if you
found out during disconnection halfway through a file that the rest was miss-
ing? “Chunks” give possibility for better use of bandwidth especially with
large files (only the needed parts are transferred), but it is harder to work
with, i.e., which parts of a file are needed? Under the assumptions made
in 3.1.4 and 3.1.5—i.e., files are read or written in their entirety and files
are small (10-22K)—whole file replication is a sensible choice. Even more so,
when files in a UNIX environment are nothing more—to the system—than
a raw stream of bytes.

The alternative would be structured files (or objects) with the structures
known (i.e., semantic knowledge of objects [27], [28]) and/or supported by
the file system.

Coda and Ficus use whole file replication. Bayou uses a relational database,
thus the granularity can be rows of tables (partial replication by means of
(updateable!) views [54]), but for know it replicates the full database!

3.3 Replica Control Strategies

“I am not altogether on anybody’s side,
because nobody is altogether on my side”

– Treebeard (Lord of the Rings)

Here I will discuss replica control strategies in the light of a primary copy
scheme with a single server and multiple clients.

3.3.1 Pessimistic

My definition of pessimism is:

Definition 3.1 A pessimistic replication strategy employed by a client, C,
with regards to a file, f, ensures that C’s reads from or writes to f are per-
formed on the newest version seen by the server and the updates are guar-
anteed to reach the server successfully (under normal circumstances).

CHAPTER 3. REPLICA CONTROL 32

Note, giving such guarantees requires some sort of locking (on the server).

The normal definition of a pessimistic replication strategy is that it allows
an update—to any (logical) file at any given time—to be made to at most one
of the replicas (of the file) throughout the system. This is a more restrictive
definition than mine; with my definition two clients cannot be pessimistic
about the same file, but it is possible for a client to do optimistic updates
(see Section 3.3.3) to a file even if the file is locked due to another client being
pessimistic (but the optimistic clients are almost certain to fail). This could
be the case if a client could not get in contact with the server and decided
to do updating anyway (being optimistic).

3.3.2 Strict

My definition of strict is:

Definition 3.2 A strict replica control strategy employed by a client, C, with
regards to a file, f, ensures that C’s reads from or writes to f are performed
on the newest version seen by the server.

The notion of strictness comes form the world of distributed shared mem-
ory (DSM) systems [52, Ch.6.3]; and there a read should return the most
recent write throughout the system (not just at the server). Such guarantees
can only be given (under the assumption that users are not willing to wait
“forever”) tightly coupled systems (such as DSM systems) or in fast local
area networks, in bigger systems and in mobile computing network transfer
times are too large to make this feasible.

3.3.3 Optimistic

My definition of optimism is:

Definition 3.3 An optimistic replication strategy employed by a client, C,
with regards to a file, f, gives no guarantees.

Note, the version of, f , read or written may be or become inconsistent with
the server version and there are no guarantees regarding updates.

Other systems have the same notion of optimism, i.e., that you can read
and write to any replica without guaranteed success.

Coda and Ficus uses optimistic replication. Bayou uses a weak consis-
tency scheme (i.e., the system is optimistic).

CHAPTER 3. REPLICA CONTROL 33

3.3.4 Multi-Level Consistency

When it comes to keeping replicas mutually consistent, existing systems use
either a pessimistic, a strict, or an optimistic strategy.3 In a system with
mobile computers it might be a good idea to have multi-level consistency,
due to the variation in quality of communication. Multi-level consistency
is means that applications can specify whether they want to be pessimistic,
strict, or optimistic when using a particular file, and maybe even have varying
degrees of pessimism and optimism.

By introducing multi-level consistency applications can adapt their be-
haviour according to the state of their environment (i.e., the characteristics
of communication) and/or user demands. They can relax their consistency
requirements as the quality of communication decreases in order to achieve
higher availability or reduce cost, and strengthen them again when suited.

In a system with multi-level consistency (using session semantics) pes-
simism will naturally have higher precedence than optimism. If an appli-
cation uses a file optimistically (e.g., opens it for writing), and then later
another application use the same file pessimistically, then the second appli-
cation will get a lock on the file, and thereby hindering updates done by
the first application. Thus pessimism should be used with caution, as it
might decrease availability (for other applications/clients than the one being
pessimistic).

In Coda, Ficus, and Bayou conflicts are always possible because they use
optimistic replication only. In a system with multi-level consistency conflicts
can be avoided if it is in the interest of the application (and thereby user).
The application decides when to be optimistic (and to what extent) and when
not to; optimism is not layed down a priori by the system.

3.3.5 Conflict Detection

My definition of (mutual) consistency is:

Definition 3.4 A cached (version of a) file, f’, is consistent with the primary
copy, f, if (and only if) f’ has the update history as f.

If a file is cached then the cached version—which is a secondary copy—
may or may not be consistent with the server version; the primary copy. Note
that with this definition it is not sufficient to have the same content to be

3Albeit, under different definitions of the terms!

CHAPTER 3. REPLICA CONTROL 34

consistent. Two versions of a file having the same update history should have
the same content, whereas two versions of a file having the same content do
not necessarily share the same update history. The decision to use update
history in the definition rather than content is based on the fact that it is
cheaper to compare timestamps than file contents. Since primary copies are
stored in one place (a single server) and since consistency is only measured
against the primary copy, timestamp comparisons are sufficient to check for
consistency, there are no need for version vectors or the like.

To my knowledge Coda, Ficus, and Bayou use similar definitions of con-
sistency. Using a database, as in Bayou [53], allows for testing of logical
conflicts, i.e., based on the data in the tables. Bayou applications must
specify their own conflict detection, called a dependency check, with each
write/update.

3.3.6 Conflict Resolution

Conflict resolution is a complicated matter, and I will consider it to beyond
the scope of this report. And since conflict resolution is application-specific
I will leave it up to the applications, then they can leave the resolution of
conflicts to the ultimate experts; the users.

Coda has application-specific resolvers (ASRs) that can be provided by
programmers, Ficus has something of the same sort (though I do believe it
is somehow based on filetypes) but they are provided by the system. Bayou
applications must specify a conflict resolver, called a merge procedure, for
each write/update.

In Bayou conflict detection and conflict resolution can be given for each
write/update, whereas in Coda and Ficus conflict detection is performed
by the system and conflict resolvers are global [39]. I think that Bayou’s
solution is much more flexible, but it inevitably leads to more programming,
and existing applications cannot be used at all!

3.4 Replication transparency

When introducing mobile computers into an otherwise stationary distributed
system, it must be decided whether the existing applications should continue
to function without any changes to them or whether new applications must
be developed.

CHAPTER 3. REPLICA CONTROL 35

No existing applications (that I am aware of) use multi-level consistency,
varying their consistency demands after the characteristics of current commu-
nication media. So existing applications must be rewritten (or taken special
care of, see Section 5.8) if they are to use such a scheme. It could be decided
to develop a whole new environment for mobile computing and write new
applications which could make way for an optimal solution. But since the
system I am going to develop is to be used in connection with an existing
distributed system, then that is really not feasible. A solution that requires
only small changes to existing applications is maybe the thing to decide upon,
and that I will do.

Coda, Ficus, and MIo-NFS all have replication transparency, that is, the
caching of files on the mobile computers, conflict detection, and conflict res-
olution is handled by system (as much as possible). Bayou on the other hand
has absolutely no replication transparency; applications must be written with
awareness of the fact that they are working on replicas and supply conflict
detection and resolution.

A funny consequence of replication transparency is that when the sys-
tem fails to resolve a conflict then the resolution of it is not left to the
application—because it does not know about the replication—but to the
users! So this is a case were transparency on application level leads to non-
transparency on user level.

3.5 Synchronization

Clocks must be kept synchronized if a timestamp mechanism is to be used.
A simple and easy to implement clock synchronization algorithm is the one
that goes by the name Cristian’s algorithm.

The server must also act as time server [52] under the assumption that
server time is correct time or for the fact that it is important that the clients
are synchronized with the server (even if it is out-of-sync with real time). Of
course, the algorithm will only work properly if the client does not change
media (causing the messages to and from the server to have a large gap in
communication time) during synchronization.

CHAPTER 3. REPLICA CONTROL 36

Figure 3.2: Cristian’s algorithm (running on the client)

procedure SynchronizeTime();
var
Tstart,Tend,TS,TS: time;

begin
Tstart:=GetClientTime; { start of communication Time }
TS:=GetServerTime; { request and receive Server Time }
Tend:=GetClientTime; { end of communication Time }
TS:=TS+(Tstart-Tend)/2; { estimated Server Time }
TS:=TS-Tend; { calculate Time Skew }
if |TS|>MaxTS then
Warning(’Time Skew is beyond Max’)

else
SetClientTime(TS)

end; {SynchronizeTime}

An explanation of the different “times” used in the above algorithm can
be found in Table 3.1. These will also be used in later chapters.

Table 3.1: Times
T real Time
TC Client Time
TS Server Time
TS Time Skew TS=TS-TC

3.6 Caching

This section contains a discussion of which files to be cached and when!

Which files should be cached:

• The ones (recently) referenced,
i.e., the current working set [34] as in Little Work [15].

• The ones (supposedly) needed,
i.e., the critical set [34] as in Coda [22], [42].

CHAPTER 3. REPLICA CONTROL 37

• The ones (most often) used,
i.e., the average set [34].

• Them all,
i.e., the full set as in Bayou [53].4

The Seer [26] predictive caching system tries to cache the critical set
as well as the average set by observing user behaviour (e.g., logging file
references) and computing a reference distance between files as a measure of
how closely-related files are (pair-wise). It then combines this information
with least-recently-used , LRU , information and user-specified hints.

If the cache size is big enough it might be the full set. If the cache size is
limited, a choice between the other three must be made. I choose to cache
the current working set, since that solution is the one easiest implemented
(in a simple LRU fashion). A choice of the critical set would have resulted
in some loss of transparency, because it requires some sort of user-assisted
cache management [45] such as the hoarding facility in Coda [22], [42] or as
the user-specified hints in Seer [26]. In order to cache the average set, some
sort of mechanism to collect usage statistics would have to be deployed, e.g.,
a spying agent as in D-NFS [7].

The drawback of choosing the simple solution is that the other solu-
tions are very likely to result in fewer cache misses during disconnection—
especially Coda has experienced high availability in disconnected mode due
to the hoarding mechanism [42]. On the other hand, my choice of a simple
LRU solution makes it possible for me, at a later stage, to change my mind.
Programs to compute a priority list of the files in a critical set (e.g., using an
algorithm similar to Coda’s hoard walking) or an average set could be used.
Once a priority list had been computed, the files simply needed to be cached
in reversed priority order (lowest priority first), e.g., by opening and closing
them for reading one at a time, making the LRU method keep the files with
highest priority in the cache. Probably not a very efficient (nor especially
transparent) way of heating up the cache [16] or doing demand hoard walk-
ing [42] (there is plenty room for improvement here), but it is possible. If
the full set is desired then the priority list should simply contain all files (and
the cache should be large enough).

4The Bayou people are planning to use partial replication [54], in which case—I think—
it will be the critical set.

CHAPTER 3. REPLICA CONTROL 38

3.7 Summary

This is an overview of the decisions made in the previous sections of this
chapter:

1. Only shared files and applications are supported.

2. Assumptions made regarding file usage:

• Low level of write-sharing, especially due to human write locks.

• Small files, average size 10-22K.

• No special support for different file types.

– Note: Even though I will not make many explicit choices
based on these assumptions, the implementation will most
certainly function less than optimal if actual system use de-
viates a lot from these.

3. Session semantics were chosen for file sharing.

4. Granularity of replication is whole files, a sensible choice in light of the
above assumptions.

5. A replica control strategy based on a primary copy scheme:

• Multi-level consistency based on definitions of pessimistic, strict,
and optimistic replica control strategies.

• Conflict detection based on timestamping.

• Conflict resolution left to the applications.

6. The file system should require minimal changes to existing applications.

7. The clients are assumed to be synchronized with the server, but a simple
service to check this, based on Cristian’s algorithm, will be provided.

8. Caching is done in a simple least-recently-used (LRU) fashion.

Chapter 4

Transactions

The concept of transactions has its origins in database systems (see [5,
Ch.16], [47, Ch.6.9]). A transaction is a collection of operations that form a
(single) logical unit of work. The classic example of a (database) transaction
is the transferring of a certain amount of money from one bank account to
another, see Appendix B. The essential idea of a transaction is atomicity,
i.e., either all the operations of the transaction are performed or none of them
are performed (there is no middle way).1

In the following sections I will look at properties of transactions and their
implications (Section 4.1) especially with regards to mobility, and how they
can be implemented (Section 4.2).

4.1 Properties of Transactions

In the world of (distributed) operating systems transactions normally have
four properties: atomicity , consistency , isolation, and durability (ACID).
As far as I know, the only transactions that have been designed for mobile
computing do not uphold all of these properties, in fact they only guarantee
isolation (see [30], [31]) which is “funny” since that is the only property of
the four properties mentioned that is normally not provided with database
transactions.2

In the following three subsections each of the CID properties will be
treated separately, constantly comparing them to properties of database

1That a transaction is atomic must not be understood as if it in some sense is the
smallest unit, i.e., that it does not consist of distinguishable parts (operations).

2In Oracle, for example, you must use explicit locking in order to avoid conflicts, see
Section 4.1.1.

39

CHAPTER 4. TRANSACTIONS 40

transactions. The subsection on isolation will discuss the isolation-only trans-
actions (IOT s) in more depth. The A for atomicity has already been treated,
its the “all-or-nothing” property:

In my point of view it makes no sense to discuss transactions that
are not atomic—why are they called transactions?

One can either agree with me on this matter or not. If one does not, then
the rest of this chapter will be of no use.

Some applications may find it useful to nest transactions, even though
by allowing this it is impossible to uphold all of the four ACID properties for
both inner and outer transactions, see Section 4.1.4.

Warning: When the term transactions is used in connection with databases
it is understood, that they are atomic, consistent, and durable (but not
necessarily isolated), see, e.g., [5]. In the operating system world the terms
transactions [4], [34] and atomic transactions [46], [47], [52] (implying that
there can exist non-atomic transactions) are used interchangeably and it is
normally understood (in both cases) that they have the ACID properties.
Furthermore, I am not convinced that there is agreement on the use of the
term consistency, which I will return to in Section 4.1.1.

Unless otherwise stated I will assume that transactions have the ACID
properties (as these are defined below), and that database transactions are
atomic, durable, and consistent.

4.1.1 Consistency

As I see it, there are two significantly different levels of consistency to be
discussed: operation level consistency and system level consistency.

Operation Level Consistency

Operation level consistency means that the operations of the transaction
do not leave data (or whatever type of object that is operated upon) in
an inconsistent state. More precisely, a transaction, when executed alone,
transforms an initially correct system state into another correct state [6].

For instance, the bank account transaction to transfer $100 from one
bank account to another, may not withdraw $100 from the first account and
then incidentally deposit $101 on the second account, although this could
easily be the case, e.g., due to a programming/typing error. I agree with [4,
p.360] that (this type of) consistency generally is “the responsibility of the
programmers”, thus transactions are assumed to be correct. You could have

CHAPTER 4. TRANSACTIONS 41

consistency constraints [34] (or integrity constraints [6]), but I find it unlikely
that it is possible to guard against any programming error; just think of one
or more consistency constraints to avoid the extra $1 deposited in the scenario
just mentioned. This view is supported by [6] (in a database context):

“In practice, a complete specification of the constraints governing
a small database is impractical (besides, even if it were practical,
enforcing the constraints would not be).”

It is also the way that the Oracle database works [37]:

“A transaction should consist of all of the necessary parts for one
logical unit of work — no more and no less. Data in all referenced
tables should be in a consistent state before the transaction begins
and after it ends.”

Making operation level consistency the programmers responsibility is not
going to make me feel the least bit guilty (just handing the problem over
to somebody else), because it is not hard to program in a operation level
consistent manner, due to the atomic property of transactions.

Furthermore, it is my belief that consistency constraints are “easier” to
specify and check in databases where data is typed, than it must be with
shared files that to the operating system normally are nothing but unin-
terpreted sequence of bytes [52, p.246]. Even though this is the case, the
operation level consistency is normally the C in ACID, i.e., it is a property of
transactions in (distributed) operating systems. To my knowledge the con-
sistency for database transactions have never been anything but system level
consistency.

System Level Consistency

System level consistency is a promise given by the transactional system that
the execution of transactions that uphold certain requirements (as a mini-
mum they should be correct, i.e., operation level consistent) leave an initially
correct system state into another correct system state.

If the system guarantees that transactions are atomic, isolated, and durable
then system level consistency is no more than operation level consistency—if
transactions that produce correct result when executed alone, are executed
as if they were alone, then they will produce correct results.

CHAPTER 4. TRANSACTIONS 42

If, for instance, the system does not guarantee isolation, additional require-
ments3 may be put on the transactions for the system to make any promises.
In Oracle transactions are not isolated and additional locking is required [37]:

“SELECT FOR UPDATE [that acquires explicit row locks] is rec-
ommended when you need to lock a row without actually chang-
ing it. For example, if you intend to base an update on the
existing values in a row, you need to make sure the row is not
changed by someone else before your update.”

Conclusion

I will assume that transactions are operation level consistent—it is the re-
sponsibility of the programmers. System level consistency is a must, but it is
necessary to decide which additional requirements (if any) the transactions
must fulfill in order to guarantee that. I will return to this matter.

4.1.2 Isolation

Running transactions isolated from each other is to say that the execution of
several transactions concurrently produces the same database state as some
serial execution of the same transactions; the execution is serializable [6].

If transactions were not isolated then transactions that would maintain
operation level consistency in a single-user, single-process system (i.e., in
a system where transactions would be forced to run one after the other,
serialized) could not be guaranteed to maintain operation level consistency
in a multi-user, multi-process system. For instance, the two transactions in
Figure 4.1 (p. 43) would maintain operation level consistency, if they were
isolated, but in the figure they are not, so they do not. I personally think
that this is the reason why isolation is considered to be of great importance
for transactions in (distributed) operating systems.

3In addition to being operation level consistent.

CHAPTER 4. TRANSACTIONS 43

Figure 4.1: Non-isolated database transactions
User 1 User 2
DECLARE

amount MONEY;
BEGIN
--Transfer $100 from <A> to

SELECT Balance
INTO amount
FROM BankAccounts
WHERE Id=<A>;

/* Withdraw $100 from <A> */
UPDATE BankAccounts
SET Balance=Balance-100
WHERE Id=<A>
AND Balance>=100;

COMMIT;
IF amount>=100 THEN

UPDATE BankAccounts
SET Balance=amount-100
WHERE Id=<A>;

UPDATE BankAccounts
SET Balance=Balance+100
WHERE Id=;

END IF;
COMMIT;

END;
/

Note: Assume that user 1 sees a Balance of $100 (i.e., amount=$100) then
these two interleaving transactions would result in a Balance of -$100, which
were not the intention of neither of the users.

User 1 needs to put a lock on the balance of bank account <A>, so that user
2 cannot alter it. In Oracle you acquire such a lock by selecting for update,
e.g., by adding the line FOR UPDATE OF Balance to the SELECT statement.
Doing so would prevent user 2 from doing an update of the selected data,
i.e., the update would simply be forced to wait until user 1 released the lock
(by the COMMIT), and then it would fail (i.e., Balance=$0).

CHAPTER 4. TRANSACTIONS 44

The problem could be solved (or more precisely, laid in the hands of the
programmers) with the use of locks (see the note below Figure 4.1, p. 43).
Few distributed operating systems have explicit locking, so they must serial-
ize their transactions. Fortunately, I plan to have locking in my file system
(because pessimism requires locking, see Section 3.3.1). I will put the same
additional requirement on transactions as Oracle does, i.e., that additional
locking is required in order to guarantee system level consistency. This deci-
sion is based on the fact that it is (must be) hard to serialize transactions in
a system with mobile computers when these might execute their transactions
locally, long before they get in contact with any servers (while disconnected,
for example).

Isolation-Only Transactions

In order to cater for transactions in Coda, a special type of transactions has
been suggested, namely isolation-only transactions (IOT s), see [30], [31].
This facility has been thoroughly treated in [34] where it is concluded that
IOTs are actually COT s (consistency-only transactions), because the trans-
actions are not isolated from one another, instead the operations of the trans-
actions are checked for consistency (at server commit time, see Section 4.1.3).
As mentioned before, I would hesitate to even call IOTs (or COTs) for trans-
actions, because they are not atomic; in my view it would be appropriate to
call them a “consistency check mechanism” or similar.

Serial Transactions

In the distributed file system Deceit (that has no support for mobile com-
puters) they use serial transactions (ST s) which they define as [46, p.22]:

“An atomic transaction [has] two properties: recoverability and
serializability. Recoverability means that the transaction com-
pletes or fails entirely. Serializability means that the transactions
exhibit behaviour consistent with some total ordering. A serial
transaction is a transaction that only provides serializability.”

What they call recoverability4 is what I call atomicity, and serializability
is a way to provide isolation in the sense that transactions do not intervene
with other transactions performing conflicting file operations (which is the
total ordering they mention). So in fact STs are (to some extent at least)
IOTs!

4Even though a (serial) transaction partly completes, it might still be possible to re-
cover, as in undo, from it’s actions (manually).

CHAPTER 4. TRANSACTIONS 45

4.1.3 Durability

When a transaction is finally committed (successfully), then the changes
brought about it should be persistent. In other words the doings of the
transaction can only be changed (or undone) by executing new commands
or transactions that operate on the “results” of the committed transaction.

In mobile computing it may take a while before the changes made by a
transaction reach the server and are (finally) committed there. In the mean
time, it makes sense to let new transactions continue working on the in some
sense un-committed data. If the first one at a later time is found out to fail
then the “following” transactions must fail to, of course. However until that
time the doings of a transaction may seem committed to new transactions.
This leads to the following definition of pending transactions: A transaction
is pending or tentative until it has been committed on the server, though it
may appear to be committed from a clients, e.g., a disconnected ones, point
of view.

In mobile computing we then have transactions executing and commit-
ting (or rolling back) in two stages; on a client and on the server. So an
implementation would have to consider the stages of executing, committing,
and rolling that are listed in Tables 4.1 and 4.2.

Table 4.1: Different stages for execution and commit of a transaction
LET Local Execution-Time execution-time in [34]
LCT Local Commit-Time tentative commit on client
SET Server Execution-Time re-execution on server
SCT Server Commit-Time commit-time in [34]

Table 4.2: Different stages for rollback of a transaction
LER Local Execution Rollback during local execution (LET)
LCR Local Commit Rollback at local commit time (LCT)
SER Server Execution Rollback during server (re-)execution (SET)
SCR Server Commit Rollback at server commit time (SCT)

CHAPTER 4. TRANSACTIONS 46

4.1.4 Nesting

The idea of nesting transactions, i.e., having transactions inside transactions,
is not from the database world. It gives rise to the following definitions:

Definition 4.1 An inner transaction begins and ends within another trans-
action. An outer transaction has an inner transaction. An innermost or
bottom-level transaction is an inner transaction that is not an outer transac-
tion. An (or the) outermost or top-level transaction is an outer transaction
that is not an inner transaction.

Note: A transaction that is neither an inner nor an outer transaction is the
same as a transaction without nesting.

I do not think nesting is such a great idea, because it necessarily violates
two of the fundamental properties of transactions, namely atomicity and
durability. If nesting of transactions is used then atomicity and durability
cannot be hold for both outer and inner transactions:

• If inner transactions are durable, then outer transactions cannot be
atomic, i.e., they cannot rollback the changes of the inner transactions,
because they are permanent (durable).

• If outer transactions are atomic, then inner transactions cannot be
durable, i.e., they cannot keep their changes at a rollback of the outer
transactions, because they are atomic.

Conclusion

No nesting, it is just a nice feature that you can easily do without, and it
blurs the definitions of atomicity and durability.

4.2 Concurrency Control

“Success generally depends upon knowing
how long it takes to succeed.”

– Charles Louis de Secondat Montesquieu

After looking at the properties of transactions, we now turn to the matter
of how to implement the transactions, the name of the game is concurrency
control.

CHAPTER 4. TRANSACTIONS 47

A strict transaction is a transaction that consists entirely of strict opera-
tions (see Section 3.3.2). I will leave the definition of pessimistic transactions
and optimistic transactions to the reader.

Different techniques, such as Two-Phase Commit, Logging, and Opti-
mistic Concurrency Control, for concurrency control has been thoroughly
discussed in [34]. Instead of repeating it here I will present my solution that
is based on Optimistic Concurrency Control.

4.2.1 Optimistic Concurrency Control

I suggest a new optimistic concurrency control mechanism based on private
workspace and modification times, i.e., instead of checking what the other
transactions are doing at commit-time (as in Kung and Robinson’s Optimistic
Concurrency Control algorithm [29]). I wish to check only the state of the
files, see Figure 4.2 (p. 48).

The algorithm does not serialize the transactions on the server, i.e., at
SCT , but since I have decided not to provide isolation that is not a problem.
Neither step 1 nor step 2 in the algorithm could lead to ROLLBACK, if the
transaction was pessimistic—the files would have been locked by that trans-
action, and thus could not have been changed not locked by other operations
or transactions!

4.2.2 Boundaries of Transactions

In the database world a (new) transaction is begun (implicitly) after a commit
or after a rollback. The commit or the rollback may be performed explicitly
(using a COMMIT or a ROLLBACK statement) or implicitly by the system
when a program terminates,5 where a commit is performed on successful
termination and a rollback otherwise. There are no explicit BEGINs or
ENDs to outline database transactions, and database transactions cannot be
nested.

In connection with a file system transactions have to be outlined explicitly,
because transactions are not a natural part of the system. Begins, ends, and
probably also new transactional operations need to be introduced, so that
the system can be told which operations belong to which transactions, and
when the transactions are begun and ended.

5The “program terminates” should not be taken literally, it could be at termination of
any sequence of operations.

CHAPTER 4. TRANSACTIONS 48

Figure 4.2: A new algorithm for optimistic concurrency control

begin

<For each file read or written, or until ROLLBACK, do the following:

1. has the file been changed (on the server) so that it is inconsistent with
the version the transaction operated on, then ROLLBACK

2. has the file been locked (explicit by pessimistic read or write operations,
or implicit by another transaction), then ROLLBACK

3. if neither 1. nor 2. is the case then put a lock on the file

>

<If all files operated on have been successfully locked through the steps
taken above, then:

• make a copy of all the files (in case something goes wrong)

• alter all the updated files

• see to that all changes are written to stable storage

• release all the locks, thereby completing the COMMIT

>

end

4.3 Summary

This is a summary of the decisions taken and conclusions made in the previous
sections of this chapter:

• Transactions are atomic.

• Transactions are assumed to be operation level consistent. It is the
programmers’ responsibility to write them that way.

• Transactions are not guaranteed to be isolated, so additional locking
may be required to guarantee system level consistency.

• Transactions are durable after having been committed on the server.

CHAPTER 4. TRANSACTIONS 49

• Transactions that are pending seem committed to a client.

• Transactions cannot be nested.

• A new algorithm for optimistic concurrency control was sketched.

• Explicit begins and ends, and new transaction operations are needed.

Chapter 5

The Model

I have decided that the implementation takes place at the C [21] interface
level (e.g, replacing fopen and fclose), not at the UNIX system level (e.g.,
neither open nor close). This will make it possible to use the system on other
platforms (assuming that the programmers use the C interface there). How-
ever it might result in even more overhead than has probably already been
introduced by implementing the C interface on top of the UNIX primitives—
you win some, you loose some. I have decided to do so anyway, simply
because it eases the implementation.

I have already decided to do LRU-caching, see Section 3.6, but I have not
yet decided whether the system should cache multiple copies of a file—i.e.,
if multiple processes on the client are using the file—or just one copy.

I have decided to cache just one copy.1 If the user of the mobile client is
using programs that access files concurrently (e.g., multiple instances of the
same program), then he or she might end up with local conflicts—but it is
probably the users own fault, since mobile computers are normally in use by
a single person at a time, see Sections 1.2.1 and 2.3. Thus it is really no step
back compared to what the users in a multi-user environment are faced with,
because there the fault might as well be some other users.

This decision does, however, conflict with the traditional definition of
session semantics [3]. My system guarantees session semantics pr. client
and not pr. application.

Much of the presentation that follows is based on an article [51] presented
at the OOPSLA’96 Workshop on Object Replication and Mobile Computing
(ORMC’96).

1This decision is new compared to the contents of [51].

50

CHAPTER 5. THE MODEL 51

Recall, that I am using a primary copy scheme with a single server and
multiple clients using session semantics. The model is based on the use of
time as a consistency measure. With each cached file is associated:

• A Modification Time (MTC); the time of the last update to the file (on
the server),

– Note: From the subscript it is made clear that the replica resides
on the client (as opposed to on the server).

• a Consistency Time (CT); the time at which the cached file was known
to be consistent with the primary copy on the server, and

• a Consistency Check Time (CCT); the time of the last check for con-
sistency between the cached file and the primary copy on the server.

If CT = CCT , then the last check for consistency was positive, otherwise
negative. According to the definition of consistency, see Definition 3.4 in
Section 3.3.5, a consistency check can be performed simply by comparing
the modification time (MTC) of the cached file with the modification time
(MTS) of the primary copy on the server.

With every open for reading must be associated a Consistency Time
Bound (CTB), and with every open for writing must be associated a Modifi-
cation Time Bound (MTB). Furthermore, an Expiration Time Bound (ETB)
must be associated with each close. These time bounds must be given explic-
itly by the application. Their exact meanings are explained in Sections 5.1,
5.2 and 5.5, respectively.

Throughout the rest of this chapter the notations listed in Tables 5.1, 5.2,
5.3 will be used extensively; they will be explained later.

Table 5.1: Consistency times
CT Consistency Time
CCT Consistency Check Time
CF Consistency Flag CT = CCT ⇔ CF
MT (Server) Modification Time

CHAPTER 5. THE MODEL 52

Table 5.2: Expiration times
ET Expiration Time
RET Readlock Expiration Time
WET Writelock Expiration Time

Table 5.3: Time bounds
CTB Consistency Time Bound
MTB Modification Time Bound
ETB Expiration Time Bound (*)
RETB Readlock Expiration Time Bound
WETB Writelock Expiration Time Bound

(*): Referred to as Close Expiration Time (CET) in [51].

5.1 Reading

I feel that the model is best presented by means of examples, so here goes!
This is the example used in [51].

Imagine a client holding a replica of a file, f, in the cache with the asso-
ciated values <MTC=8.00,CT=9.00,CCT=9.00>. This would be the result
if the file was last updated (before 9.00) on the server at 8.00, and cached on
the client in question at 9.00. At 10.00 (being now) the client opens the file
for reading with a command similar to:

open(f,READING,CTB)

5.1.1 Pessimistic Reading

If CTB>0 then f must be and remain consistent (with the server version)
within the specified time bound. For example, with CTB=2 hours (from
now), then f must be guaranteed to be and remain consistent until 12.00.
In other words, f must not have been updated on the server between 9.00
(where it was cached) and 10.00 (which is now), and furthermore, it must
not be updated on the server (by other clients) for the next two hours.

If f has been updated between 9.00 and 10.00 then a new copy of it is
required, for it to be consistent now. Under any circumstance a readlock

CHAPTER 5. THE MODEL 53

must be obtained, for it to remain consistent within the next two hours.
Locking of files are dealt with in Section 5.4.

If obtaining a new copy of f or a readlock on it (or both) succeeds then
the open succeeds, otherwise it fails.

Using CTB>0 the client is pessimistic. The greater the CTB the higher
the degree of pessimism.

5.1.2 Optimistic Reading

If, on the other hand, CTB<0 then the client is satisfied with f if it was
consistent at least no longer ago than specified by the time bound. In the
example with CTB=-2 hours (back), the read succeeds because f was con-
sistent sometime within the last two hours, namely one hour ago at 9.00.

With CTB=-1
2 hour, a new consistency check is required because f cannot

be guaranteed to have been consistent half an hour ago at 9.30. If it has not
been updated on the server (by another client) since 9.00 then it (the cached
file) can be used, otherwise a new copy is required (either way CT and CCT
can be set to 10.00). If obtaining a new copy is necessary and that fails then
the open fails.

Using CTB<0 the client is optimistic. The more negative the CTB the
higher the level of optimism.

5.1.3 Strict Reading

If, finally, CTB=0 then f must be consistent now, but is not guaranteed
to remain consistent. As in the previous cases a new version of f may be
required.

Using CTB=0 the client is being strict.

5.1.4 The Consistency Time Bound

The correspondence between the consistency time bound and the level of op-
timism or pessimism when opening a file for reading is depicted in Figure 5.1.

It should be noted that the higher the level of optimism by one client the
lower the level of availability for other clients!

CHAPTER 5. THE MODEL 54

Figure 5.1: Consistency Time Bound (CTB)

To sum up the previous sections:
When a file, f, is opened for reading and CTB is the specified consistency

time bound, then the following “rules” apply:

• If CTB>0 then f must be and remain consistent within the specified
time bound. This is pessimistic reading. With an increasing CTB the
level of pessimism increases.

• If CTB=0 then f must be consistent (now). This is strict reading.

• If CTB<0 then f is guaranteed to have been consistent no longer
ago than specified by the time bound. This is optimistic reading. With
a decreasing CTB there is an increasing chance of reading stale data
(inconsistent files).

CTB should be thought of as a system guarantee, and the user or the appli-
cation may end up doing better—e.g., if available bandwidth is used intelli-
gently!

Even though we previously assumed that the mobile clients did not stay
disconnected forever (see Section 1.3.1), this is in fact possible. All cached
files can be read at any time; using an infinitely negative CTB!

The primitive for open for reading is the ANSI-C [21] fopen with an added
parameter for specifying the consistency time bound:

• ANSI-C: FILE *fopen(char *pathname,char *mode);

– mode ∈ {”r”,”rb”}

• PeStO: FILE *p open(char *pathname,char *mode,int ctb);

CHAPTER 5. THE MODEL 55

5.2 Writing

The MTB associated with an open for writing is the “mutating” counterpart
of the CTB associated with an open for reading. The command is similar:

open(f,WRITING,MTB)

CHAPTER 5. THE MODEL 56

When a file, f (as in the above command), is opened for writing and MTB
is the specified time bound, then the following “rules” apply:

• If MTB>0 then f must be and remain consistent within the spec-
ified time bound. This is pessimistic writing.

– Note: In this case consistency should be thought of as: The file
is not updated on the server by other clients. The replica, on
the client that opens the file for writing, of course do not stay
consistent (because it is written to), but it will “merge” success-
fully with the primary copy if it reaches the server before the lock
expires—so in this sense it is consistent.

• If MTB=0 then f must be consistent (now). This is strict writing.

• If MTB<0 then f is guaranteed to have been consistent no longer
ago then specified by the time bound and on last check. This is opti-
mistic writing.

– Note: Compared to reads the file is additionally required to have
been consistent on the last check (i.e., CT=CCT), for else the
writing is bound to fail (it is inconsistent even before it is begone).

As with the CTB the MTB should be thought of as a system guarantee
and the user or the application may end up doing better—e.g., if available
bandwidth is used intelligently!

The correspondence between the modification time bound and the level
of optimism or pessimism when opening a file for writing is depicted in Fig-
ure 5.2.

Figure 5.2: Modification Time Bound (MTB)

CHAPTER 5. THE MODEL 57

The primitive for open for writing is the ANSI-C [21] fopen with an added
parameter for specifying the modification time bound:

• ANSI-C: FILE *fopen(char *pathname,char *mode);

– mode ∈ {”r+”,”r+b”,”w”,”wb”,”w+”,”w+b”,”a”,”ab”,
”a+”,”a+b”}

• PeStO: FILE *p open(char *pathname,char *mode,int mtb);

5.3 Creating & Deleting

Creating files is done by opening non-existent files for writing. I have decided
to provide a primitive for removal of a file that checks for any locks and also
(if possible) deletes the primary copy on the server. The implementation is
done in the simplest way; the removal fails if the server cannot be reached.2

The primitive for removing is the same as the ANSI-C [21] remove:

• ANSI-C: int remove(char *pathname);

• PeStO: int p remove(char *pathname);

5.4 Locking

Introducing locks into a system inevitably leads to a lot of decisions that
must be made. To cut things short, I have decided to go with a very simple
solution:

1. Locks are non-blocking.

2. All locks must be accepted by the server.

3. A file can have multiple readlocks (by the same number of clients) or
a single writelock (by a single client).

4. A client can obtain at most one lock pr. file.

5. A client cannot renew a previously obtained lock for additional time.
2A harder way of doing it (but more in line with the rest of the model), would be to

let the application specify a modification time bound; removal is a mutating operation.

CHAPTER 5. THE MODEL 58

6. A client cannot convert a readlock to a writelock or vice versa.

7. Locks that are obtained in order to read and write are treated as
writelocks.

Decision 1 renders it unnecessary to implement waiting queues or the like,
but it also lessens the possibility of deadlocks (now programming deadlocks
are left entirely to the programmers). Decisions 2 and 3 are obvious. De-
cisions 4 to 7 reduce the complexity of the implementation, but they also
reduce server traffic—a client knows if it already has a lock on a file, and
thus do not need to contact the server to learn that a new lock request must
fail. Furthermore, decisions 5 and 6 give fairness, and thus no starvation.
Schematic overviews of the outcome of performing a readlock, a writelock, a
readunlock, and a writeunlock are given in Figures 5.4, 5.5, 5.6, and 5.7. The
decisions admittedly give little flexibility, but on the other hand the locking
mechanism is easily understood.

Note, that the decisions naturally reflect back on pessimistic read and
write opens, since they require locking.

I have decided to provide primitives for locking and unlocking files. These
may come in handy when a user does a voluntary disconnection, knowing that
he or she is going to update the file later.

If a client locks a file that is not cached on the mobile client, then the file
gets cached. This is done under the assumption that if the client locks the
file (e.g., in a situation like the one just mentioned), then it is going to be
used.

In order to provide an interface that is similar to that of the other file oper-
ation primitives I have decided upon these two file locking primitives:

• int p lock(char *name,char *mode,int etb);

• int p unlock(char *name,char *mode);3

3Since it has been decided that a client can obtain at most one lock pr. file, the mode
parameter is actually not needed—the system knows which kind of lock that the client
has on the file. However, at the time this was pointed out to me [3], it had already been
implemented (and partly tested). It is not really that bad, because the client should also
know which kind of lock that has been put on the file!

CHAPTER 5. THE MODEL 59

Table 5.4: Performing a read lock
REQUEST: p lock(name,"r",RETB)

STATUS BEFORE OUTCOME STATUS AFTER S
NOT_LOCKED success READ_LOCKED by yourself, *

RET=TC+RETB
READ_LOCKED failure READ_LOCKED by yourself,
by yourself RET unchanged
READ_LOCKED success READ_LOCKED along with others, *
by others RET=TC+RETB
READ_LOCKED failure READ_LOCKED along with others,
along with others RET unchanged
WRITE_LOCKED failure WRITE_LOCKED by yourself,
by yourself WET unchanged
WRITE_LOCKED failure WRITE_LOCKED by another *
by another

Note: The S-columns indicates with an asterix when it is necessary to con-
tact the server. If the server is unreachable in these cases then the outcome
is failure.

Table 5.5: Performing a write lock
REQUEST: p lock(name,"w",WETB)

STATUS BEFORE OUTCOME STATUS AFTER S
NOT_LOCKED success WRITE_LOCKED by yourself, *

WET=TC+WETB
READ_LOCKED failure READ_LOCKED by yourself,
by yourself RET unchanged
READ_LOCKED failure READ_LOCKED by others *
by others
READ_LOCKED failure READ_LOCKED along with others,
along with others RET unchanged
WRITE_LOCKED failure WRITE_LOCKED by yourself,
by yourself WET unchanged
WRITE_LOCKED failure WRITE_LOCKED by another *
by another

CHAPTER 5. THE MODEL 60

Table 5.6: Performing a read unlock
REQUEST: p unlock(name,"r")

STATUS BEFORE OUTCOME STATUS AFTER S
NOT_LOCKED failure (!) NOT_LOCKED
READ_LOCKED success NOT_LOCKED *
by yourself
READ_LOCKED failure READ_LOCKED by others
by others
READ_LOCKED success READ_LOCKED by others *
along with others
WRITE_LOCKED failure WRITE_LOCKED by yourself,
by yourself WET unchanged
WRITE_LOCKED failure WRITE_LOCKED by another *
by another

(!): Even though this is what is wanted it must be considered a fault.

Note: The S-column indicates with an asterix when it is necessary to contact
the server. If the server is unreachable in these cases then the outcome is
failure.

Table 5.7: Performing a write unlock
REQUEST: p unlock(name,"w")

STATUS BEFORE OUTCOME STATUS AFTER S
NOT_LOCKED failure (!) NOT_LOCKED
READ_LOCKED failure READ_LOCKED by yourself,
by yourself RET unchanged
READ_LOCKED failure READ_LOCKED by others *
by others
READ_LOCKED failure READ_LOCKED along with others,
along with others RET unchanged
WRITE_LOCKED success NOT_LOCKED *
by yourself
WRITE_LOCKED failure WRITE_LOCKED by another *
by another
(!): Even though this is what is wanted it must be considered a fault.

CHAPTER 5. THE MODEL 61

5.5 Conflicts

Since optimistic write operations are allowed, conflict situations are unavoid-
able. Since I chose session semantics for file operations then conflicts for a
given file can only be detected after that file has been closed.

If it takes some amount of time before the updates are propagated to the
server, then it is impossible to report failure or success immediately, that is,
whether there is a conflict or not. We could let the close operation block
until “the matter has been sorted out”, but not all applications are geared
to do so—they probably expect the close to return immediately. How long
an application can wait is specific to that application, so a way of letting the
application tell the system, how long it is prepared to wait, is needed. I chose
to associate yet another time bound with the close operation (well along the
line of the other operations)—the Expiration Time Bound (ETB).

Imagine a client closing a file, f, by issuing a command similar to:

close(f,ETB)

A close command, like the one above, will not return until either all
updates have been propagated successfully back to the server, or a conflict
has been detected, or it times out (expires) according to the specified time
bound (see Figure 5.3). The command can return SUCCESS, FAILURE, or
TIMEOUT.

Figure 5.3: Expiration Time Bound (ETB)

If the close times out then the application can take appropriate actions,
e.g., inform the users that they must check f later (themselves) because it
cannot say whether the close eventually succeeds or not!4

If the close results in failure and the file was opened for writing, then
the application can inform the user that his or her updates failed, and copy
the contents of the cached file to another (new) file (or do whatever actions

4It may be a good idea to provide some way for the application to check at a later
stage, but the current implementation does not.

CHAPTER 5. THE MODEL 62

it deems necessary). If the file was opened for reading and the close fails
then it means that the user have been reading stale data (i.e., from a file
that has been updated on the server in the meantime); the application can
ignore this or, if it is “polite”, inform the user.

The primitive for closing a file is the ANSI-C [21] fclose with an added
parameter for specifying the expiration time bound:

• ANSI-C: int fclose(FILE *fp);

• PeStO: int p close(FILE *fp,int etb);

The two following subsections are dedicated to the matters of how con-
flicts are best avoided, when they are detected, and how they can be resolved!
First subsection is about read/write conflicts and the other about write/write
conflicts.

5.5.1 Read/Write Conflicts

In this section I will look at read/write conflicts, i.e., writes based on or using
out-dated data.

Example Scenario

• Bill using client machine no. 1 opens libresolve.a (strict, i.e., MTB=0)
for writing, does his updating (locally), and closes libresolve.a.

• Joe using client machine no. 2 opens resolve.c for writing, does
his updating (locally) and closes resolve.c. Then he (re-)builds the
program resolve with libresolve.a linked in, thus libresolve.a
is opened (strict, i.e., CTB=0) for reading, read (locally), and closed
during the build.

Possibility of conflict:

• No read/write conflict:
If Bill gets all his work done, before Joe starts reading libresolve.a
then everything is fine, i.e., no read/write conflict occurs. This is de-
picted in Figure 5.4 (If, contraversely, Joe gets all his work done, before
Bill starts rewriting libresolve.a then there is no read/write conflict
either—Joe used the latest possible update of the library file).

CHAPTER 5. THE MODEL 63

Figure 5.4: No read/write conflict

• Read/write conflict:
A read/write conflict occur when Joe starts reading (as a side effect of
his rebuilding of resolve) libresolve.a after Bill has started—but
before he has finished (or before the updated version has reached the
server)—rewriting it, or when Bill starts rewriting while Joe is reading!

Figure 5.5: Undetectable read/write conflict

Detection of read/write conflict:

• The read/write conflict depicted in Figure 5.5 could be detected by use
of transactions, that is, if Joe had grouped his work into one transaction

CHAPTER 5. THE MODEL 64

that ended after the close of resolve. This is hinted by the stippled
arrow from client 2 to the server at the close(resolve) command.
For now, the system cannot detect conflicts of this type.

• One could argue that to contact the server after closing a file opened
for reading only is not needed, since it does not affect the server, but
it opens up the possibility of detecting some read/write conflicts, i.e.,
such as the one depicted in Figure 5.6. Therefore I chose to contact
the server after a “read” close, to report such a situation.

Figure 5.6: Detectable read/write conflict

Using locks to avoid read/write conflicts:

• Now, if Bill had locked the file for writing (i.e., being pessimistic using
MTB>0) , the open for reading in Figure 5.5 and the open for read-
ing in Figure 5.6 would have failed, and thus the read/write conflicts
avoided—at the expense of letting Joe wait until Bill had finished!

• If Joe had started reading before Bill started rewriting, then read/write
conflicts could have been avoided if Joe had been pessimistic (i.e., using
CTB>0, and thus readlocking libresolve.a).

In other words, the introduction of locks into the system, to some extent
can make up for the lack of such a thing as IOTs—at the expense of some
availability.

CHAPTER 5. THE MODEL 65

5.5.2 Write/Write Conflicts

Write/write conflicts are easily detected. When a client wishes to send an
updated file to the server, then the server simply checks the associated mod-
ification time (MTC) with that of the primary copy (MTS). If MTC<>MTS

then there is a conflict. Conflicting files are never send to the server. Of
course, the server also has to check if the file is locked (by other clients).

The only way for a client to make absolutely sure that updating to a
file will succeed is to obtain a writelock on the file, close the file and get in
contact with the server before the writelock expires!

5.6 Other Features

5.6.1 Temporary Files

Since temporary files should be handled differently than persistent files (see
Section 3.1.1)—because there is no need to “bother” the server with tempo-
rary files—it would be a good idea to provide special primitives for these.
This way the applications can tell the system which files are temporary (and
that is the only way for the system to found out). I have not implemented
any of these, because they are already there; in ANSI-C [21].

Primitives from ANSI-C for using temporary files:

• FILE *tmpfile();

• char *tmpnam(char s[L tmpnam]);

5.6.2 Synchronization

A synchronization primitive based on Cristian’s algorithm (see Section 3.5)
is provided.

The PeStO synchronization primitive is:

• long p time(int flag);

The flag should be used to signal whether the client just wants to get the
(estimated) server time, or whether it actually wants to synchronize (i.e.,
set client time to the estimated server time). A very simple synchronization
program is shown in Figure 5.7.

CHAPTER 5. THE MODEL 66

5.6.3 Status

To let applications adapt their behaviour with respect to the (caching) status
of a file and the current quality of communication, I have decided upon two
primitives that supply these informations.

The PeStO status primitives are:

• int p stat(char *name,long *mt,long *ct,long *cct,long *ret,
long *wet);

• int p comm();

In Figure 5.8 (though a bit out of place) is an example use of these primitives.

5.6.4 More Primitives

As suggested by the lists of operations on files and directories in Sections 3.1.2
and 3.1.3, there are lots of opportunities for providing additional primitives
(a rename, a copy, a ...). I have decided to do none of these, since most of
them can (more or less elegantly) be written using the other (file) primitives.

Figure 5.7: Synchronization

/* psync.c - PeStO sample application */

#include "pclient.h"

int main()
{
long t;

if((t=p_time(SET_TIME))==(long)NOT_OK) {
p_perror("Synchronization using p_time failed");
return -1;

}
else {

printf("Client time set to %s",ctime(&t));
return 0;

}
}

CHAPTER 5. THE MODEL 67

Figure 5.8: Example use of status primitives

/* pstatus.c - PeStO sample application */

#include "pclient.h"

int initstat=TRUE;

void filestatus(name)
char *name;

{
int cached;
long t,mt,ct,cct,ret,wet;

if(initstat) {
printf("\n%-30s Cached Consistent Readlocked Writelocked\n","Filename");
initstat=FALSE;

}

if((cached=p_stat(name,&mt,&ct,&cct,&ret,&wet))==NOT_OK)
printf("%-30s %6s %10s %10s %11s\n",name,"?","?","?","?");

else
if(!cached)

printf("%-30s %6s %10s %10s %11s\n",name,"NO","-","NO","NO");
else {

time(&t);
printf("%-30s %6s %10s %10s %11s\n",name,"YES",(ct==cct) ? "YES" : "NO",
(ret>=t) ? "YES" : "NO",(wet>=t) ? "YES" : "NO");
}

}

void communicationstatus()
{

int commstat;

printf("\nCommunication Status: ");

commstat=p_comm();

switch(commstat) {
case NOT_OK:
printf("NOT WORKING PROPERLY\n");
break;

case CONNECTED:
printf("FULLY CONNECTED\n");
break;

case WEAKLY_CONNECTED:
printf("WEAKLY CONNECTED\n");
break;

case DISCONNECTED:
printf("DISCONNECTED\n");
break;

default:
printf("UNKNOWN\n");

}
}

void main(argc,argv)
int argc;
char *argv[];

{
communicationstatus();

for(; argc>1;)
filestatus(argv[--argc]);

printf("\n");
}

CHAPTER 5. THE MODEL 68

5.7 Primitives

Client programs wishing to access shared files using the PeStO file system
should start with a #include "pclient.h". The client interface (available
primitives) is described in the following sections.

5.7.1 File Primitives

The following file primitives are provided:

• FILE *p open(char *name,char *mode,int tb)
returns a valid filepointer (FILE *) or NULL.

• int p close(FILE *fp,int etb)
returns SUCCESS, TIMEOUT, FAILURE, or NOT OK.

• int p lock(char *name,char *mode,int etb)
returns OK or NOT OK.

• int p unlock(char *name,char *mode)
returns OK or NOT OK.

• int p stat(char *name,long *mt,long *ct,long *cct,long *ret,
long *wet)
returns CACHED with mt, ct, cct, ret, and wet set, NOT CACHED, or
NOT OK.

• int p remove(char *name)
returns OK or NOT OK

Errors are reported by the pso errno variable. If no errors are encoun-
tered pso errno is set to PSO ENOERROR. An error message corresponding to
the given error number can be written using the p perror procedure, see
Section 5.7.2.

Legal values of mode are:

• For reading (only): "r", "rb".

• For (re-)writing: "w", "wb", "w+", "w+b".

• For reading and writing (i.e., updating): "r+", "r+b".

• For appending: "a", "ab", "a+", "a+b".

CHAPTER 5. THE MODEL 69

Note: The additional b (for binary) makes no difference in a UNIX environ-
ment. All strings containing either r, w, or a are initially accepted by PeStO
but if they are illegal (i.e., not one of those listed above) with respect to the
standard ANSI-C mode used in fopen they might fail after all.

Time bounds, tb or etb, are given in whole minutes. Expiration time
bounds, etb’s, less than zero are treated as zeros.

5.7.2 System Settings & Primitives

This section lists the possible settings for the system and the few primitives
provided by PeStO that do not fall into the file operation category.

The system settings:

• TIMESKEW MAX in "pesto.h": This is the maximum time skew. If it
is not the case that |TS| ≤ TIMESKEW MAX (where TS is the estimated
time skew) then the client’s clock is drifting too much with respect to
the server’s clock.

• LOG & LOGFILE in "ppserver.h": Should the server keep a log of the
received requests?

Other possibilities are (but these are not implemented): maximum readlock
and writelock expiration time bounds.

The system primitives are:

• long p time(flag)
returns estimated server time or (long)NOT OK.

• int p comm()
returns CONNECTED, WEAKLY CONNECTED, DISCONNECTED, or NOT OK.

• void p perror(char *str)

The flag used as parameter to p time should be GET TIME or SET TIME. If
SET TIME then the client’s time will be set to the estimated server time.

CHAPTER 5. THE MODEL 70

5.7.3 Transaction Primitives

The suggested transaction interface is:

• transaction id *begin transaction(int ctb,int mtb,int etb)

• FILE *t open(transaction id tid,char *pathname,char *mode)

• int t close(transaction id tid,FILE *fp)

• void abort transaction(transaction id tid)

• transaction status end transaction(transaction id tid)

• transaction status status transaction(transaction id tid)

Since these have not been implemented I will not use a lot of space on
discussing their use. Instead I will give a few notes and give an example of
how I imagine them used:

• All reads and writes using the file pointer returned by a transactional
open, t open(*tid,...), are considered part of the transaction iden-
tified by tid.

• Before an abort transaction all open files that are part of the trans-
action (i.e., opened using t open) must be closed explicitly.

• The application can test (using status transaction) for the status of
a transaction, and re-execution of the transaction is the responsibility
of the application—the system does not provide any functionality of
such sort. The possible statuses of a transaction is given in Table 5.8.

• Example use of transactions are given in Figures 5.9 and 5.10 pp. 72-73.
Please note that these are examples of how I think it could be done—it
has not been implemented!

• The optimism, strictness, or pessimism of the transaction is tied to the
distributed file service using the same (notions of) consistency, modifi-
cation, and expiration time bounds.

– E.g., if the transaction is a pessimistic one (and communication
is good enough to get the changes to the server “in time”) then
COMMITED ON CLIENT is sufficient; the updates are guaranteed to
reach the server due to the obtained write-locks, and the reads are
guaranteed to be consistent due to the obtained read-locks. If the
locks were not obtained, the transaction would have failed.

CHAPTER 5. THE MODEL 71

• On the server a transaction could be uniquely identified by the trans-
action id (from the client) and a machine (the client’s) id (i.e., IP-
number).

Table 5.8: Transaction status values
Status Meaning
NOTBEGUN Unable to start; begin transaction failed?
RUNNING ON CLIENT Transaction is executing on the client
ABORTED Explicitly aborted using abort transaction
ABORTED ON CLIENT Attempt to commit on client side failed
COMMITED ON CLIENT All transactional statements succeeded on client
RUNNING ON SERVER Transaction is attempting commit on the server
ABORTED ON SERVER Attempt to commit on server failed
COMMITED ON SERVER All transactional statements succeeded

Whether a successful implementation based on these ideas is possible or
not, only the future can tell. I rest my case.

5.8 Existing Applications

Existing applications could be ported easily using:

• pessimistic: fopen(name,mode) → p_open(name,mode,∞) or using
p_lock(name,mode,∞)

• strict : fopen(name,mode) → p_open(name,mode,0)

• optimistic: fopen(name,mode) → p_open(name,mode,-∞)

Note: The ∞ in the above read-statements means a sufficiently large num-
ber (so big that it will last the whole of the systems lifetime).

Default values for CTB, MTB, and ETB pr. system or application could
be used implicitly when running existing applications (unchanged). However
this would require new daemons to catch, for instance, access to remote files
via NFS, e.g. as it is done in [32].

CHAPTER 5. THE MODEL 72

Figure 5.9: Example use of transactions (1)

transaction_status do_transfer(ctb,mtb,etb,tid)
int ctb,mtb,etb;
transaction_id *tid;

{
FILE *fpA,*fpB;
money amountA,amountB;

if((*tid=begin_transaction(ctb,mtb,etb))==NOT_OK)
return NOTBEGUN;

/* Transactional open -- uses ctb or mtb implicit */
if((fpA=t_open(*tid,"BankAccA.bal","r+"))==NULL) {

abort_transaction(*tid);
return ABORTED;

}

/* Read balance on BankAccount A */
fscanf(fpA,"%10.2f",&amountA);

if(amountA>=100.00) {
/* Withdraw $100 from BankAccount A */
rewind(fpA);
fprintf(fp,"%10.2f,"",amountA-100.00);

if((fpB=t_open(*tid,"BankAccB.bal","r+"))==NULL) {
t_close(fpA);
abort_transaction(*tid);
return ABORTED;

}

/* Deposit $100 on BankAccount B */
fscanf(fpB,"%10.2f",&amountB);
rewind(fpB);
fprintf(fpB,"%10.2f",amountB+100.00);

/* Transactional Close -- uses etb implicit */
t_close(*tid,fpB);

}

t_close(*tid,fpA);
return end_transaction(*tid);

}

CHAPTER 5. THE MODEL 73

Figure 5.10: Example use of transactions (2)

void main()
{

transaction_id tid;
transaction_status tstat;
int ctb,mtb,etb;
long timeout,starttime;
int retries,stop;

ctb=mtb=etb=1; /* pessimistic, one minute of locking */

if((tstat=do_transfer(ctb,mtb,etb,&tid))==NOTBEGUN)
exit("Unable to initiate transfer");

retries=5; /* stop after 5 retries */
timeout=600; /* timeout after 10 min */
stop=FALSE;
starttime=time();
while(tstat!=COMMITED_ON_SERVER&&retries>0&&!stop) {

switch(tstat) {
case ABORTED_ON_SERVER:

ctb=...; mtb=...; etb=...; /* use new values */
case ABORTED:
case ABORTED_ON_CLIENT:

retries--;
tstat=do_transfer(ctb,mtb,etb,&tid); /* re-execute */
break;

default:
tstat=status_transaction(tid); /* check status */

}

if(tstat==NOTBEGUN||starttime+timeout>time())
stop=TRUE;

}

if(tstat!=COMMITED_ON_SERVER)
exit("Transfer failed");

printf("Transfer succeeded\n");
}

Chapter 6

The Implementation

This chapter describes the actual implementation in some details. I have
used the following sources [48], [12], [23], and [50] for information of how
to program client/server applications in a UNIX environment using sockets.
Code from all of these can be refound in some form in PeStO.

6.1 System Requirements

Without TACO (client and server):

• UNIX System V (SYSV) compliant, or

• Linux (LINUX) kernel version 1.2.13 (or greater).

With TACO (client and mobility support gateway) [12]:

• Linux kernel version 1.2.13,

• PPP networking support, and

• PC Card services version 2.8.9 by David Hinds (client only).

6.1.1 Test Environment

The server program has been used on hp9000s700 machines running a SYSV
compliant operating system (compiled with -D SYSV5) and Intel Pentium
machines running LINUX (compiled with -D LINUX). For testing with TACO
the server could have been chosen among any of the machines provided by

74

CHAPTER 6. THE IMPLEMENTATION 75

DIKU that can be reached on the Internet or any of the Intel Pentium ma-
chines on the AMIGOS/Net. For convenience1 the machine chosen during
testing with TACO was the Intel Pentium machine amigos1.diku.dk run-
ning LINUX, which also acted as Mobility Support Gateway (see [11]).

The client program without TACO has been used on hp900s700 machines
running a SYSV compliant operating system and on an Intel Pentium ma-
chine running LINUX. The machine chosen for testing with TACO was the
amigos6.diku.dk which is an Intel Pentium notebook running LINUX and
equiped with a PC Card that fits the requirements.

6.1.2 Portability

PeStO standalone could easily ported to other UNIX look-a-likes (I believe),
but I do not think it will be easy to port it to other operating systems, since
the UNIX file primitives are used extensively. If PeStO is to be used with
TACO, then it will be a matter of porting TACO as well, and I cannot tell
you if that is hard (or even possible) or easy.

6.2 Fault-Tolerance

Since all caching information (on the client side) and all locking information
(on the server side) is kept in external files, then none of it is lost if either
of the machines should crash! The only thing lost are information to match
open file pointers with file names and lock expiration times; but that is hardly
a problem, since the locks should (eventually) expire, and a crashed client
program is not able to use the file pointers any longer anyway.

Both server program and client applications can be restarted after a crash;
the caching and locking info will still be available.

1And based on advice from Jørgen Sværke Hansen, co-implementor and current main-
tainer of the TACO implementation

CHAPTER 6. THE IMPLEMENTATION 76

6.3 Client/Server Communication

The server and the client communicates by sending messages of the type
pmessage defined as:

typedef struct pmessage_struct {
int status; /* status */
int request; /* request or reply */
long t; /* time */
long ret; /* readlock expiration time */
long wet; /* writelock expiration time */
long ct; /* consistency time */
long cct; /* consistency check time */
long mt; /* modification time */
long crt; /* client receive time */
char name[PATHNAME_MAX]; /* filename */

} pmessage;

pmessage buf;

The server knows (handles) the following requests in buf.request: READ
OPEN, WRITE OPEN, SEND FILE, RECV FILE, READ LOCK, WRITE LOCK, READ
UNLOCK, WRITE UNLOCK, TELL TIME, REMOVE FILE, RENAME FILE, READ CLOSE,
WRITE CLOSE, and SEND STAT defined in "pesto.h".

For all the above requests, the server replies with a status in buf.status
of NOT OK if something went wrong or OK otherwise. If the status is OK
then the reply is found in buf.request and will be one of the following:
CONSISTENT, INCONSISTENT, NOTFOUND, NOTLOCKED, ISLOCKED, ISUNLOCKED,
WASLOCKED, WASUNLOCKED, WASREMOVED, WASRENAMED, DOSEND, WILLSEND, or
WASFOUND defined in "pesto.h".

Each request is answered with a reply. If the reply is DOSEND or WILLSEND
then a file is subsequentially send from the client to the server or vice versa.

6.3.1 Communication with TACO

Explicit use of TACO was narrowed down to link monitoring using the link
daemon, linkd, communicating with the client applications through a newly
written pesto-taco daemon, ptacod, and the file ".pesto.commstat", see
Figures 6.1 (p. 77), 6.2 (p. 78), and 6.3 (p. 79). The pesto-taco daemon is
based on code from the TACO user guide [12].

CHAPTER 6. THE IMPLEMENTATION 77

Figure 6.1: PeStO-TACO daemon (1)

/***/
/* ptacod.c - PeStO TACO link monitoring Daemon */
/* */
/* Written by: Michael G. Sørensen, November 1996, DIKU */
/***/

/*
Based on code from

"Users Guide for TACO" by Jørgen Sværke Hansen, November 15, 1996
*/

#include "pesto.h"
#include <malloc.h>
#include <mobsup.h>
#include <limits.h>

/* BEGIN define **/
/* settings in lnkchg.c */

#define FULL_COST_MAX 10 /* ether = 0 */
#define FULL_BANDWIDTH_MIN 1000000 /* ether = 10000000 */
#define FULL_LATENCY_MAX 800 /* ether = 400 */

#define WEAK_COST_MAX 800 /* gsm = 400 */
#define WEAK_BANDWIDTH_MIN 1200 /* gsm = 9600 */
#define WEAK_LATENCY_MAX 280 /* gsm = 140 */
/* END define **/

int ln_sfd=0;

void io_sa_handler(sig_no)
int sig_no;

{
struct qos_if cur_qos;
int link_up;
char commstr[17];
int fd;

accept_link_notification(&cur_qos);

link_up=(cur_qos.flags&MIF_UP);

if(cur_qos.min_bandwidth>=FULL_BANDWIDTH_MIN&&
cur_qos.max_cost<=FULL_COST_MAX&&
cur_qos.max_latency<=FULL_LATENCY_MAX) {
if(link_up) /* CONNECTED */
sprintf(commstr,"CONNECTED ");

else /* DISCONNECTED */
sprintf(commstr,"DISCONNECTED ");

}
else {

if(cur_qos.min_bandwidth>=WEAK_BANDWIDTH_MIN&&
cur_qos.max_cost<=WEAK_COST_MAX&&
cur_qos.max_latency<=WEAK_LATENCY_MAX) /* WEAKLY CONNECTED */
sprintf(commstr,"WEAKLY_CONNECTED");

else /* DISCONNECTED */
sprintf(commstr,"DISCONNECTED ");

}

#ifdef TEST
printf("%s\n",commstr);

#endif

CHAPTER 6. THE IMPLEMENTATION 78

Figure 6.2: PeStO-TACO daemon (2)

if((fd=open(".pesto.commstat",O_WRONLY|O_CREAT,PERMS))!=-1) {
if(lock_file(fd)!=NOT_OK) {

if(lseek(fd,0L,0)!=-1)
write(fd,commstr,strlen(commstr));

unlock_file(fd);
}
close(fd);

}
}

void setup_sio_signal()
{
struct sigaction *sa;

sa=(struct sigaction *)malloc(sizeof(struct sigaction));
sa->sa_handler=&io_sa_handler;
sigemptyset(&(sa->sa_mask));
sa->sa_flags=0;

sigaction(SIGIO,sa,NULL);

return;
}

void main()
{

struct qos_if iface_qos;

iface_qos.max_cost=INT_MAX;
iface_qos.min_bandwidth=0;
iface_qos.max_latency=INT_MAX;
iface_qos.flags=MIF_UP;

ln_sfd=assign_link_notification(&iface_qos);

setup_sio_signal();

do {
pause();

} while(TRUE);
}

CHAPTER 6. THE IMPLEMENTATION 79

Figure 6.3: PeStO-TACO communication

/***/
/* ptaco.h - include file for PeStO file server programs */
/* */
/* Written by: Michael G. Sørensen, September-November 1996, DIKU */
/***/

int ptaco()
{

int fd;
char c;

/* ptacod writes communication status to .pesto.commstat */

if((fd=open(".pesto.commstat",O_RDWR))==-1)
return DISCONNECTED;

else
if(lock_file(fd)==NOT_OK) {

close(fd);
return DISCONNECTED;

}
else {

if(read(fd,&c,1)<1) {
unlock_file(fd);
return DISCONNECTED;

}
unlock_file(fd);
switch(c) {
case ’C’:

return CONNECTED;
case ’W’:

return WEAKLY_CONNECTED;
default:
return DISCONNECTED;

}
}

}

Figure 6.4 (p. 80) shows the data flow. The arrow from the socket interface to
the linkd daemon should not be taken too literally - it is more complicated
than so, see [11]. An overview of the files are given in Section 6.4.

The system naturally uses TACO implicitly when it (TACO) is running,
since the TACO system handles the forwarding of all IP and UDP packets
to and from the client when weakly connected, see [11].

CHAPTER 6. THE IMPLEMENTATION 80

Figure 6.4: Data flow

6.4 Overview of Files and Subroutines

Here follows a list of the program files and their contents. The list is given
here only to provide a minimal overview of the code written. Excerpts from
the server program, pserver.c, and the include file for client applications,
pclient.h, are given in Appendix A. An overview of which files are included
in which files can be seen in Figure 6.5.

pclient.h: Include file for client applications.2

• #include: "pesto.h" & "ppclient.h"

- contains all of those primitives described in Section 5.7.1 and Section 5.7.2
except p perror.

2Will some day be implemented as a library.

CHAPTER 6. THE IMPLEMENTATION 81

Figure 6.5: Include files

ptacod.c: Communication between PeStO and TACO. It is in this file that
the intervals for connected, weakly connected, and disconnected operation
are defined (see Figure 6.1, p. 77).

• #include: "pesto.h" & "mobsup.h"

• #define: FULL COST MAX, FULL BANDWIDTH MIN, FULL LATENCY MAX,
WEAK COST MAX, WEAK BANDWIDTH MIN & WEAK LATENCY MAX.

Should be linked with the TACO mob library:

cc -o ptacod -I/home/projects/tacoo/tacosys/moblib/include \
-L/home/projects/tacoo/tacosys/moblib/lib -D LINUX ptacod.c \
-lmob

Is supposed to run on client machine in the background, and the TACO link
daemon, linkd, should also be running.

CHAPTER 6. THE IMPLEMENTATION 82

—

pserver.c: PeStO server program.

• #include: "pesto.h" & "ppserver.h"

• void main(int argc,char *argv[])

• void p server()

Is supposed to be running on the server machine!

—

pesto.h: Shared include file for clients and server.

• p perror (see 5.7.2)

• int init host(char *host,int port,struct sockaddr in *sa)

• int init sock(struct sockaddr in *sa,int *sd)

• int send file(int sd,char *name)

• int recv file(int sd,char *name,mode t perms)

• int close sock(int sd)

• int lock file(int fd)

• int unlock file(int fd)

Also contains all necessary includes of standard libraries, all commonly used
defines, a type definition of the buffer used for exchanging messages between
server and client, and global variables (such as the PeStO error number
variable int pso errno).

—

ppclient.h: Include file for client code. Contains miscellaneous help func-
tions used by the various library functions in pclient.h.

• #include: "pinfo.h", "ptaco.h" & "pname.h"

• typedef: NAME & nameb

CHAPTER 6. THE IMPLEMENTATION 83

• void pbuf(pmessage *buf,int request,long ret,long wet,long
ct,long cct,long mt,char *name)

• FILE *pfopen(char *name,char *mode,int fd)

• int prequest(struct sockaddr in *sa,int *sd,pmessage *buf)

• int preceive(struct sockaddr in *sa,int *sd,pmessage *buf)

—

pinfo.h: Include file for client code. Contains functions that read, write,
and update caching information for files.

• void name info(char *name,char *infoname)

• int write info(int fd,long mt,long ct,long cct,long ret,long
wet,long crt)

• int read info(char *name,long *mt,long *ct,long *cct,long
*ret,long *wet,long *crt,int *fd)

• int update info(int fd,long mt,long ct,long cct,long ret,long
wet,long crt)

• int delete info(char *name)

—

ptaco.h: Include file for client code. Contains the function int ptaco()
used for determining communication status as reported by ptacod.c.

—

pname.h: Include file for client code. Contains functions for mapping file
pointer to file names and lock expiration times. Uses the NAME & _nameb
structures defined in ppclient.h in a similar manner to the handling of
open file pointers in [21, Ch.8].

• int pgetname(FILE *fp,char *name)

• int pinsname(FILE *fp,char *name)

CHAPTER 6. THE IMPLEMENTATION 84

• int pdelname(FILE *fp)

—

ppserver.h: Include file for server code. Contains miscellaneous help func-
tions used in the server program.

• #include: "plock.h"

• #define: LOG & LOGFILE

• void plog(char *str)

• void plogerr(char *str,int sd,char *name)

—

plock.h: Include file for server code. Contains functions that read, write,
and update locking information for files.

• name lock(char *name,char *lockname)

• int write lock(int fd,char *host,long ret,long wet)

• int read lock(char *name,char *host,long *ret,long *wet,int
*fd)

• int update lock(int fd,char *host,int ret,int wet)

• int lookup lock(int fd,char *host,long ret,long wet)

• int delete lock(char *name)

6.5 Program Flow

To give some idea of, what actually goes on within the client library func-
tions, I have drawn flow diagrams for p open, p close, p lock, and p unlock.
These are attached (being the makings of a non-LATEX2ε-compatible pro-
gram) to Appendix C. An explanation is included there.

6.6 Availability

All of the source code is available on request, contact me, and I will be more
than willing to provide you with a copy.

Chapter 7

Test & Evaluation

If the file system is to have any success, then the overhead introduced by its
implementation on top of TACO and the existing UNIX system should be
negligible. I have made a series of tests to measure the overhead (in time).

I have not performed any thorough black-box or internal test, but I do
think that the performance tests cover most cases: strict, optimistic, and
pessimistic read and write operations, fully connected, weakly connected,
and disconnected mode, cached and not cached!

The performance tests are described in Section 7.1, the results are listed
in Section 7.2, and an evaluation is made in Section 7.3. The evaluation
section also lists problems encountered with using PeStO and TACO.

7.1 Tests

The test environment for use of TACO has already been described, see Sec-
tion 6.1.1. Weakly connected mode were tested using a 14400B modem.
Another environment used in order to evaluate PeStO without use of TACO
has been with two hp9000s700 machines in DIKU’s net; embla.diku.dk as
server and skade.diku.dk as client. In these environments I have performed
the following tests (on the files listed in Table 7.1):

1. Session: Reading - fully connected.

(a) Start with an empty cache.

(b) Communications status is fully connected.

(c) Open all the files for reading strict and close them.
The files are not cached. Files are fetched from the server. This
measures the overhead compared with TACO for fetching when
fully connected, and compared to remote NFS access.

85

CHAPTER 7. TEST & EVALUATION 86

(d) Open all the files for reading strict and close them.
The files are cached and consistent. Files are acknowledged from
the server. This measures the gain of caching compared with
TACO for fetching when fully connected.

(e) Communication status is disconnected.

(f) Open all the files for reading optimistic and close them.
The files are cached and within the consistency time bound. Files
are opened locally, and there is no server contact. This measures
the overhead compared with local UNIX for reading.

(g) Communication status is fully connected.

(h) Open all the files for reading pessimistic and close them.
The files are cached and consistent. Files are acknowledged from
and locked on the server. This measure the overhead of locking
compared with not locking (in one of the above tests) when fully
connected.

2. Session: Reading - weakly connected.

(a) Start with an empty cache.

(b) Communications status is weakly connected.

(c) Open all the files for reading strict and close them.
The files are not cached. Files are fetched from the server. This
measures the overhead compared with TACO for fetching when
weakly connected.

(d) Open all the files for reading strict and close them.
The files are cached and consistent. Files are acknowledged from
the server. This measure the gain of caching compared with TACO
for fetching when weakly connected.

(e) Open all the files for reading optimistic and close them.
The files are cached and within the consistency time bound. File
are opened locally, ant here is no server contact. This measures
the overhead compared with local UNIX for reading.

(f) Open all the files for reading pessimistic and close them.
The files are cached and consistent. Files are acknowledged from
and locked on the server. This measures the overhead of locking
compared with no locking (in one of the above tests) when weakly
connected.

3. Session: Writing - fully connected.

CHAPTER 7. TEST & EVALUATION 87

(a) Start with an empty cache.

(b) Communication status is fully connected.

(c) Open all the files for writing strict, write to them, and close them.
The files are not cached, and they are updated. Files are fetched
from and send to the server. This measures the overhead compared
with TACO for fetching and sending when fully connected, and
compared to remote NFS access.

(d) Communication status is disconnected.

(e) Open all the files for writing optimistic, write to them, and close
them.
The files are cached and within the modification time bound, and
they are updated. Files are opened locally, and send to the server,
later. This measures the overhead compared with ANSI-C on top
of UNIX for writing.

(f) Communication status is fully connected.

(g) Open all the files for writing optimistic, write to them, and close
them.
The files are cached and within the modification time bound, and
they are updated. Files are opened locally, and send to the server.
This measures the overhead compared with TACO for sending
when fully connected.

4. Session: Writing - weakly connected.

(a) Start with an empty cache.

(b) Communication status is weakly connected.

(c) Open all the files for writing strict, write to them, and close them.
The files are not cached, and they are updated. Files are fetched
from and send to the server. This measures the overhead compared
with TACO for fetching and sending when weakly connected.

(d) Open all the files for writing optimistic, write to them, and close
them.
The files are cached and within the modification time bound, and
they are updated. Files are opened locally, and send to the server.
This measures the overhead compared with TACO for sending
when weakly connected.

CHAPTER 7. TEST & EVALUATION 88

Table 7.1: Files used for testing
No. File Size Type

1 chb.ps 63499 Postscript
2 ctb2.ps 24258 Postscript
3 dataflow.ps 83551 Postscript
4 etb.ps 14812 Postscript
5 files2.ps 38401 Postscript
6 included.ps 49241 Postscript
7 mtb2.ps 24258 Postscript
8 rwc-isde.ps 91006 Postscript
9 rwc-none.ps 83218 Postscript

10 rwc-unde.ps 83218 Postscript
11 so2pesto.ps 83881 Postscript
12 states2.ps 57876 Postscript
13 speciale.log 9890 text
14 speciale.idx 10597 text
15 speciale.aux 20467 text
16 speciale.dvi 278036 DVI
17 speciale.toc 7454 text
18 speciale.lof 1625 text
19 speciale.lot 1675 text
20 speciale.ind 6403 text
21 speciale.ilg 323 text
22 speciale.tex 193688 LATEX2ε
23 pclient.h 41968 C
24 pesto.h 9019 C
25 pinfo.h 3031 C
26 plock.h 4745 C
27 pname.h 1525 C
28 ppclient.h 3873 C
29 ppserver.h 1113 C
30 pserver.c 21376 C
31 ptaco.h 977 C
32 ptacod.c 2730 C

1317734

CHAPTER 7. TEST & EVALUATION 89

7.2 Results

The running times for the tests are listed in Figures 7.2 and 7.3. The times
are averages for at least two test runs. The PeStO+TACO and TACO tests
were performed using the AMIGOS machines and the PeStO, NFS, and
UNIX tests were performed using the hp9000s700 machines (see previous
section).

Table 7.2: Running times (in seconds) for reading
NO. TEST SYSTEM TIME
1c Not cached, fetch, PeStO+TACO 5

fully connected TACO 2
PeStO 10
NFS <1

1d Cached, acknowledge, PeStO+TACO 1
fully connected PeStO 5

1f Cached, PeStO+TACO <1
disconnected TACO <1

PeStO 1
UNIX <1

1h Cached, acknowledge & lock, PeStO+TACO 2
fully connected PeStO 6

2c Not cached, fetch, PeStO+TACO 1021
weakly connected TACO 982

2d Cached, acknowledge, PeStO+TACO 50
weakly connected

2e Cached, PeStO+TACO 25
weakly connected

2f Cached, acknowledge & lock, PeStO+TACO 49
weakly connected

It may come as a surprise that some of the running times on the relatively
small AMIGOS machines are less than those from the big hp9000s700 ma-
chines. It should probably be contributed to the fact that during testing
I had the AMIGOS machines (and the full network bandwidth) for myself
whereas the hp9000s700 machines (and the network bandwidth) were shared
with up to 30-40 (eager) undergraduate students!

CHAPTER 7. TEST & EVALUATION 90

Table 7.3: Running times (in seconds) for writing
NO. TEST SYSTEM TIME
3c Not cached, fetch and send, PeStO+TACO 6

fully connected TACO 5
PeStO 15
NFS 2

3e Cached, PeStO+TACO <1
disconnected TACO <1

PeStO 1
UNIX <1

3g Cached, send, PeStO+TACO 6
fully connected TACO 2

PeStO 16
4c Not cached, fetch and send, PeStO+TACO 2061

weakly connected TACO 2009
4d Cached, send, PeStO+TACO 1033

weakly connected TACO 1003

7.3 Evaluation

ERRAT UM HUMANUM EST

These are the conclusion that can be drawn from the running times:

• If the cached files are used then the gain (compared to no caching) is
approximately 95% (e.g., 2d (50) compared to 2c (982)) when weakly
connected, and approximately 50% when fully connected (e.g., 1c (2)
compared to 1d (1)).

• Disconnected operation has no overhead (1f, 3e).

• The overhead when weakly connected is negligible (2c,4c, and 4d).

• The overhead when fully connected is acceptable (1c, 3c, and 3g)—
although in percentage rather high, then it must be remembered that
the overhead only occurs on open and close, and shared files should have
a lifetime that make this overhead negligible (i.e., short-lived temporary
files should not use PeStO).

CHAPTER 7. TEST & EVALUATION 91

• Locking requires virtually no overhead (1d compared to 1h, and 2d
compared to 2f).

All in all, I find these results to be acceptable. The overhead when fully
connected may need some improvement.

7.3.1 Problems with PeStO

I have encountered the following problems with PeStO:

1. On the server empty lockfiles are created. This is really not a problem,
but it is does not look “pretty”.

2. Filenames must have the same meaning on the server and on the client.
Thus if the client application references opens a file "foo.txt" then
the primary copy of "foo.txt" must be in the same directory as the
server program was started from, i.e., current working directory. Dur-
ing testing this of course posed no problem, but if the system is to
be used for real someday, then an alternative solution may have to be
considered.

3. When disconnected and using close ETB of zero,1 then child processes
awaiting better communication are created. If this is done many times
then the (UNIX) system may run out space for additional open file
pointers and/or socket descriptors, or even result in too many processes.

4. If client and server are not synchronized then PeStO will behave un-
expectedly. The current version of the server actually accepts requests
initiated by the client after the server has received it!

I believe that the first and second problem are easy to live with. I do not know
about the third one! A way to solve that one, could be to let a single process
(e.g., a daemon) handle all “pending” closes. All in all I think that PeStO
works OK. The fourth problem was expected and is solved by remembering
to keep the clients synchronized with the server—it is easy to do, but it must
be remembered!

1Or any ETB that times out before any type of connection is made.

CHAPTER 7. TEST & EVALUATION 92

7.3.2 Problems with TACO

I have encountered the following problems when using TACO:

1. The communication between the link daemon, linkd, and the pesto-
taco daemon, ptacod, did not work properly. Entering and leaving
weakly connected operation were not acknowledged. During testing the
entering and leaving weakly connected operation were done using:

echo WEAKLY CONNECTED >.pesto.commstat
echo DISCONNECTED >.pesto.commstat

Tests using a simple link changing simulation program showed that
the fault was not within my program.

2. The client often halted when re-entering connected operation (i.e., re-
establishing the Ethernet connection) after (voluntary) disconnections.
In these cases it was necessary to re-boot the machines in order to get
a full connection. This was quite frustrating!

Chapter 8

Conclusions

8.1 Contributions

The two main contributions of this report are:

• A new distributed file system with support for mobile computing.

• Guidelines for implementing a transactional facility there upon.

The fulfillment of the goals for the distributed file system is discussed in
Section 8.2.

As for the guidelines for a transactional facility—I have

• given my ideas to which properties the transactions should have,

• specified a new algorithm for optimistic concurrency control,

• specified transaction primitives, and

• given a rich example of how I foresee the transactions used.

8.2 Fulfillment of Goals

“Pretty still no star
want to go so far”

– Dizzy Mizz Lizzy (Run)

I think that the three main design goals, see Section 1.5.1 (p. 9), have been
fulfilled:

93

CHAPTER 8. CONCLUSIONS 94

1. Applications are able to utilize any desired level of optimism or pes-
simism,

2. applications are able to adapt their behaviour according to different
communication characteristics, and

3. the porting of existing applications should be fairly easy.

I believe that the first goal is fulfilled completely. The fulfillment of the
second goal has a minor flaw; the adaptation is only for three rather coarse
grained characteristics of communication (connected, weakly connected, and
disconnected).1 The fulfillment of the third goal can be criticized for the fact
that it has not been tried—but a scheme for how to do it, rudimentarily, is
given in Section 5.8.

The overhead introduced by the system has shown to be acceptable, see
Section 7.2, especially due to the fact that the small, but noticeable overhead
that is there only occurs when opening and closing files—reads and writes
have no overhead (they are in fact the same).

8.3 Future Work

An endless amount of future work can be suggested, but to name a few:

• The environment used in this thesis has been very simple and could
easily be broadened or generalized, e.g., multiple servers, peer-to-peer
communications, etc. There are many open roads.

• I think that it will be possible to have greater (better) utilization of
TACO’s QoS facilities. Maybe it would be a good idea to let applica-
tions specify both time bound and quality of service parameters. Better
integration of PeStO and TACO is a certainly worth looking at.

• Other consistency measures than time might be considered; the num-
ber of updates to a file, the difference (in terms of contents) between
a replica and the primary copy, Notions of fidelity as in the
Odyssey [43] system might also be included in the model.

• An implementation of the suggested transactional facility, i.e., AMI-
GOS phase three.

1There is, however, no evidence to support the need for finer grained adaptation; exist-
ing mobile computing systems, such as Coda and Little Work, uses these three modes
of operation.

CHAPTER 8. CONCLUSIONS 95

• An investigation of whether the ideas from this thesis make sense in an
object-oriented environment, i.e., AMIGOS phase four and five.

8.4 Conclusion

“That’s all Folks!”
– Looney Tunes

I have designed and implemented a distributed file system with support for
mobile computing. It enables applications to utilize any level of optimism
or pessimism and to adapt their behaviour according to different modes of
communication. The implementation have shown the design to be feasible,
but since no existing application has been ported to and used with the system,
the viability is a somewhat open question. I believe it is viable.

I have layed down guidelines for the implementation of a transactional
facility on top of the file system. I think, I have captured most of the needed
considerations in my doing so.

I must admit that I at times regretted the initial decision to use the TACO
system—it was unavailable for some time,2 and its behaviour was not always
predictable. Still, thanks to hard work (and some help), results were made
in the end.

I think that the TACO system and PeStO show promising results—but
they (by themselves and together) probably have some way to go, before
reaching “the top”.

8.5 Postscriptum

Well, I am through with school, and I am heading of into “the real world”.
Before I go, I have to tell you...

John Lennon has stated in one of his songs that:

“Life is what happens to you
while your busy making other plans.”

2Due to the changing of IP-numbers shortly after I had started my testing.

CHAPTER 8. CONCLUSIONS 96

Figure 8.1: An alternative to Mobile Computing

During the writing of this report, my girl has agreed to marry me, and we
have learned that we are to be parents (soon):

Christina,
I dedicate this work to you

Appendix A

Program

A.1 Server: pserver.c
/***/
/* pserver.c - server process for PeStO file server */
/* */
/* Written by: Michael G. Sørensen, September-November 1996, DIKU */
/***/

/* BEGIN include ***/
#include "pesto.h" /* include file for PeStO client and PeStO server */
#include "ppserver.h" /* include file for PeStO server */
/* END include ***/

/* BEGIN globals ***/
int sd1,sd2; /* socket descriptors */
struct sockaddr_in sa1,sa2; /* socket addresses (on the Internet) */
long t;
struct linger l;
/* END globals ***/

/* BEGIN PeStO file server ***/
void p_server()
{
char host[HOSTNAME_MAX]; /* name of host */
struct hostent *hp; /* result of hostname lookup */
pmessage buf; /* message buffer */
struct stat stbuf; /* file status buffer */
int locked,readlocked,writelocked;
long ret,wet,rlet,wlet;
int fd;
int flag;
char lockname[LOCKNAME_MAX];
char logstr[1000];

char *inet_ntoa();

close_sock(sd1);

if((hp=gethostbyaddr((char *)&sa2.sin_addr,sizeof(struct in_addr),sa2.sin_family))==NULL)
strcpy(host,inet_ntoa(sa2.sin_addr));

else

97

APPENDIX A. PROGRAM 98

strcpy(host,hp->h_name);

#ifdef LOG
time(&t);
sprintf(logstr,"Startup from %s port %u at %s",host,ntohs(sa2.sin_port),ctime(&t));
plog(logstr);

#endif

l.l_onoff=1;
l.l_linger=1;
if(setsockopt(sd2,SOL_SOCKET,SO_LINGER,&l,sizeof(struct linger))==-1) {
pso_errno=PSO_EERROR;
close_sock(sd2);
exit(NOT_OK);

}

if(recv(sd2,&buf,sizeof(buf),0)!=sizeof(buf)) {
pso_errno=PSO_EERROR;
close_sock(sd2);
exit(NOT_OK);

}

#ifdef LOG
sprintf(logstr,"Request from client initiated %s",ctime(&(buf.t)));
plog(logstr);

#endif

/* handle the request and give a reply */

switch(buf.request){
case READ_OPEN:
case WRITE_OPEN:

/* BEGIN open for READING or WRITING *************************************/

/*
Possible returns are: buf.status is set to NOT_OK or OK, and if OK then
buf.request is set to CONSISTENT, INCONSISTENT, NOTFOUND, ISLOCKED or
WASLOCKED.

If CONSISTENT then buf.ct and buf.cct are set. If INCONSISTENT then
buf.mt and buf.cct are set. If ISLOCKED or WASLOCKED then also
CONSISTENT if buf.ct is equal to buf.ct else INCONSISTENT.

If buf.request is READ_OPEN then the content of buf.wet is ignored,
and similarly the content of buf.ret is ignored if buf.request is
WRITE_OPEN.

*/

#ifdef LOG
if(buf.request==READ_OPEN)
sprintf(logstr,"READ_OPEN %s\n",buf.name);

else
sprintf(logstr,"WRITE_OPEN %s\n",buf.name);

plog(logstr);
#endif

buf.status=OK;

if(stat(buf.name,&stbuf)==-1) /* check existense and status of file */ {
if(errno==ENOENT) /* No such file or directory */
buf.request=NOTFOUND;

else

APPENDIX A. PROGRAM 99

buf.status=NOT_OK;
}
else {

if((locked=read_lock(buf.name,host,&ret,&wet,&fd))==NOT_OK)
buf.status=NOT_OK;

else {
time(&t);
readlocked=(locked&&ret>=t);
writelocked=(locked&&wet>=t);

buf.cct=t; /* set consistency check time for file */
if(stbuf.st_mtime==buf.mt) /* check modification time of file */ {

flag=CONSISTENT;
buf.ct=t;

}
else {

flag=INCONSISTENT;
buf.mt=stbuf.st_mtime;

}

if(writelocked||(readlocked&&buf.request==WRITE_OPEN))
buf.request=ISLOCKED;

else {
if((buf.request==READ_OPEN&&buf.ret<t)||

(buf.request==WRITE_OPEN&&buf.wet<t)) /* no locking required */ {
if((buf.request==READ_OPEN&&buf.ret>0L)||

(buf.request==WRITE_OPEN&&buf.wet>0L))
buf.request=NOTLOCKED;

else
buf.request=flag;

}
else /* locking required */ {

/*
At this point we know that the client wishes to put a readlock
on the file. But that will only be the case if neither a read-
nor a writelock was previously obtained. Still we might have an
out-dated (timeout’ed) entry in the lock(file).

*/
if((locked=lookup_lock(fd,host,&ret,&wet))==NOT_OK)

buf.status=NOT_OK;
else {

if(locked&&(wet>=t||ret>=t))
/*

Note, that this should not be! Here we have a client asking for
a lock although the client already has one. This could be the
result of unsynchronized clocks.

*/
buf.status=NOT_OK;

else {
if(buf.request==READ_OPEN) {
rlet=buf.ret;
wlet=0L;

}
else {

wlet=buf.wet;
rlet=0L;

}
if(locked) {
if(update_lock(fd,host,rlet,wlet)==NOT_OK)

buf.status=NOT_OK;
else

buf.request=WASLOCKED;

APPENDIX A. PROGRAM 100

}
else {

if(write_lock(fd,host,rlet,wlet)==NOT_OK)
buf.status=NOT_OK;

else
buf.request=WASLOCKED;

}
}

}
}

}

if(unlock_file(fd)==NOT_OK)
buf.status=NOT_OK;

}
}

psend(sd2,&buf);
break;
/* END open for READING or WRITING ***************************************/

/* ... */

default:
/* BEGIN request UNKNOWN ***/

/*
Returns buf.status set to NOT_OK.

*/

#ifdef LOG
sprintf(logstr,"UNKNOWN\n");
plog(logstr);

#endif

buf.status=NOT_OK;
psend(sd2,&buf);
break;
/* END request UNKNOWN ***/

}

#ifdef LOG
time(&t);
sprintf(logstr,"Completed %s port %u at %s",host,ntohs(sa2.sin_port),ctime(&t));
plog(logstr);

#endif

close_sock(sd2);
}
/* END PeStO file server ***/

/* BEGIN main **/
void main()
{

struct hostent *hp; /* result of hostname lookup */
int len; /* address length */
char localhost[HOSTNAME_MAX];

#ifndef SYSV5
#ifndef LINUX

int fd;
int sig_child();

APPENDIX A. PROGRAM 101

#endif
#endif

memset((char *)&sa1,0,sizeof(struct sockaddr_in));
memset((char *)&sa2,0,sizeof(struct sockaddr_in));

if(gethostname(localhost,HOSTNAME_MAX)==-1) {
pso_errno=PSO_EERROR;
exit(NOT_OK);

}

if((hp=gethostbyname(localhost))==NULL) {
pso_errno=PSO_EERROR;
exit(NOT_OK);

}

if((sa1.sin_family=hp->h_addrtype)!=AF_INET) {
pso_errno=PSO_EBADADDRESS;
exit(NOT_OK);

}

sa1.sin_port=ntohs(PORT);

if((sd1=socket(AF_INET,SOCK_STREAM,0))==-1) {
pso_errno=PSO_EERROR;
exit(NOT_OK);

}

if(bind(sd1,(void *)&sa1,sizeof(struct sockaddr_in))==-1) {
pso_errno=PSO_EERROR;
close_sock(sd1);
exit(NOT_OK);

}

if(listen(sd1,10)==-1) {
pso_errno=PSO_EERROR;
close_sock(sd1);
exit(NOT_OK);

}

#ifdef SYSV5
setpgrp();

#else
#ifndef LINUX

setpgrp(0,getpid());
if((fd=open("/dev/tty",O_RDWR))>=0) {
ioctl(fd,TIOCNOTTY,(char *)NULL); /* loose controlling tty */
close(fd);

}
#else
setpgrp();

#endif
#endif

switch(fork()) {
case -1:

pso_errno=PSO_EERROR;
close_sock(sd1);
exit(NOT_OK);

case 0: /* child process */
fclose(stdin);
fclose(stderr);

APPENDIX A. PROGRAM 102

#ifdef SYSV5
signal(SIGCLD,SIG_IGN);

#else
#ifndef LINUX

signal(SIGCLD,sig_child);
#else

signal(SIGCLD,SIG_IGN);
#endif
#endif

for(;;) {
len=sizeof(struct sockaddr_in);
if((sd2=accept(sd1,(void *)&sa2,&len))==-1) {
pso_errno=PSO_EERROR;
close_sock(sd1);
exit(NOT_OK);

}

switch(fork()) {
case -1:

pso_errno=PSO_EERROR;
close_sock(sd1);
close_sock(sd2);
exit(NOT_OK);

case 0: /* child process */
p_server();
exit(OK);

default: /* parent process */
close_sock(sd2);

}
}

default: /* parent process */
close_sock(sd1);
exit(OK);

}
}
/* END main **/

A.2 Client: pclient.h
/**/
/* pclient.h - client process(es) for PeStO file server */
/* */
/* Written by: Michael G. Sørensen, September-November 1996, DIKU */
/**/

/* BEGIN include **/
#include "pesto.h" /* include file for PeStO client and PeStO server */
#include "ppclient.h" /* include file PeStO client */
/* END include **/

/* BEGIN library subroutines **/
FILE *p_open(name,mode,tb)
char *name; /* pathname */
char *mode; /* filemode */
int tb; /* time bound (in minutes) */

{
int sd; /* socket descriptor */
pmessage buf; /* message buffer */

APPENDIX A. PROGRAM 103

long mt,ct,cct,ret,wet,crt;
long ctb,mtb,t,rlet,wlet;
int fd;
int cached,cf,commstat,rewrite,within;

pso_errno=PSO_ENOERROR;

if(strchr(mode,’w’)!=NULL||strchr(mode,’a’)!=NULL||
(strchr(mode,’r’)!=NULL&&strchr(mode,’+’)!=NULL)) {

/* BEGIN open for WRITING ***/

/* ... */

/* END open for WRITING **/
}
else {
if(strchr(mode,’r’)!=NULL) {

/* BEGIN open for READING **/

if((cached=read_info(name,&mt,&ct,&cct,&ret,&wet,&crt,&fd))==NOT_OK)
return NULL;

time(&t);
ctb=60*(long)tb; /* consistency time bound (in seconds) */

if(!cached) {

/* BEGIN open for READING and NOT CACHED *******************************/

/* ... */

/* END open for READING and NOT CACHED *********************************/
}
else {

/* BEGIN open for READING and CACHED ************************************/

cf=(ct==ctb);

if(ctb<0) {

/* BEGIN open for READING and CACHED and OPTIMISTIC ******************/

if(wet>=t||ret>=t) /* file is read- or writelocked */
return pfopen(name,mode,fd,0L,0L);

if((commstat=ptaco())==NOT_OK) {
unlock_file(fd);
return NULL;

}

within=(t+ctb<=ct||(wet>0&&t+ctb<=wet)||(ret>0&&t+ctb<=ret));

if(commstat!=CONNECTED) /* DISCONNECTED or WEAKLY CONNECTED */ {
if(within)

/*
At this point we know that the cached file is within the
specified (consistency) time bound.

We do not care whether we know the cached file is consistent

APPENDIX A. PROGRAM 104

(cf) or not (!cf).
*/
return pfopen(name,mode,fd,0L,0L);

else {
pso_errno=PSO_ENOTWITHIN;
unlock_file(fd);
return NULL;

}
}

/* send request to server and receive reply */

pbuf(&buf,READ_OPEN,0L,0L,ct,cct,mt,name);
if(prequest(&sa,&sd,&buf)==NOT_OK||buf.status==NOT_OK) {

/*
We could not request the file from the server, so we use the
cached version (if its within the specified time bound).

*/
if(within) {
close_sock(sd);
return pfopen(name,mode,fd,0L,0L);

}
else {

pso_errno=PSO_ENOTWITHIN;
unlock_file(fd);
close_sock(sd);
return NULL;

}
}

if(buf.request==ISLOCKED)
/*

Note, that even if the file is writelocked on the server we will
read it - being optimistic.

*/
if(mt==buf.mt)

buf.request=CONSISTENT;
else
buf.request=INCONSISTENT;

switch(buf.request) {
case NOTFOUND:
if(within) {

pso_errno=PSO_ENOTWITHIN;
break;

}
else {

close_sock(sd);
return pfopen(name,mode,fd,0L,0L);

}

case INCONSISTENT:
pbuf(&buf,SEND_FILE,0L,0L,buf.ct,buf.cct,buf.mt,name);
if(preceive(&sa,&sd,&buf)==NOT_OK) {
if(within) {

close_sock(sd);
return pfopen(name,mode,fd,0L,0L);

}
else {
pso_errno=PSO_ENOTWITHIN;
break;

}

APPENDIX A. PROGRAM 105

}
else

crt=buf.crt;

case CONSISTENT:
if(update_info(fd,buf.mt,buf.ct,buf.cct,ret,wet,crt)==NOT_OK)
break;

else {
close_sock(sd);
return pfopen(name,mode,fd,0L,0L);

}

case NOTLOCKED:
case WASLOCKED:
/*

Note, that the file should not have been attempted locked or
locked, because we did not ask for a lock (buf.ret=0L)!

*/
pso_errno=PSO_ESERVERERROR;
break;

default:
pso_errno=PSO_EUNKNOWNREPLY;

}

unlock_file(fd);
close_sock(sd);
return NULL;

/* END open for READING and CACHED and OPTIMISTIC ********************/
}
else

if(ctb==0) {

/* BEGIN open for READING and CACHED and STRICT ********************/

/* ... */

/* END open for READING and CACHED and STRICT **********************/
}
else {

/* BEGIN open for READING and CACHED and PESSIMISTIC ***************/

/* ... */

/* END open for READING and CACHED and PESSIMISTIC *****************/
}

/* END open for READING and CACHED *************************************/
}
/* END open for READING **/

}
else {
pso_errno=PSO_EBADMODE;
return NULL;

}
}

}

int p_close(fp,etb)
FILE *fp;
int etb; /* expiration time bound (in minutes) */

APPENDIX A. PROGRAM 106

{
char name[PATHNAME_MAX];
int cached,commstat,request,status,updated;
long t,et,mt,ct,cct,ret,wet,crt,rlet,wlet;
int fd,sd;
struct stat stbuf;
pmessage buf;

pso_errno=PSO_ENOERROR;

time(&t);
if(etb<0)

etb=0;
if(etb>0)

et=t+60*(long)etb; /* expiration time */

#ifdef SYSV5
if((fp->_flag&01)==0)

request=WRITE_CLOSE;
else
request=READ_CLOSE;

#else
if((fp->_flags&04)==0)

request=READ_CLOSE;
else

request=WRITE_CLOSE;
#endif

if(pgetname(fp,name,&rlet,&wlet)==NOT_OK) {
pso_errno=PSO_ENOTFOUND;
fclose(fp);
return NOT_OK;

}

if((cached=read_info(name,&mt,&ct,&cct,&ret,&wet,&crt,&fd))==NOT_OK) {
pdelname(fp);
fclose(fp);
return NOT_OK;

}

if(!cached) {
pso_errno=PSO_ENOTCACHED;
delete_info(name);
pdelname(fp);
fclose(fp);
unlock_file(fd);
return NOT_OK;

}

if(ct!=cct) {
pso_errno=PSO_ENOTCONSISTENT;
pdelname(fp);
fclose(fp);
unlock_file(fd);
return NOT_OK;

}

if(stat(name,&stbuf)==-1) {
if(errno==ENOENT)

pso_errno=PSO_ENOTFOUND;
else

pso_errno=PSO_EERROR;

APPENDIX A. PROGRAM 107

pdelname(fp);
fclose(fp);
unlock_file(fd);
return NOT_OK;

}

if(stbuf.st_mtime>=crt&&request==WRITE_CLOSE)
updated=UPDATED;

else
updated=NOT_UPDATED;

if((commstat=ptaco())==NOT_OK) {
unlock_file(fd);
return NOT_OK;

}

if(commstat==DISCONNECTED) {
if(etb==0) {

if(pdelname(fp)==NOT_OK) {
fclose(fp);
unlock_file(fd);
return NOT_OK;

}
if(fclose(fp)==EOF) {
pso_errno=PSO_ENOTCLOSED;
unlock_file(fd);
return NOT_OK;

}
if(unlock_file(fd)==NOT_OK)

return NOT_OK;
}
else {

/* wait for better communication status or timeout on et */
while((commstat=ptaco())!=DISCONNECTED&&et<t) {
sleep(SLEEPTIME);
time(&t);

}
}

}

if(commstat==DISCONNECTED) {
if(updated) {

switch(fork()) {
case -1:

pso_errno=PSO_EERROR;
return NOT_OK;

case 0: /* child process - wait for better communication */
fclose(stdin);
fclose(stderr);

#ifdef SYSV5
signal(SIGCLD,SIG_IGN);

#else
#ifndef LINUX

signal(SIGCLD,sig_child);
#else

signal(SIGCLD,SIG_IGN);
#endif
#endif

while((commstat=ptaco())!=DISCONNECTED)
sleep(SLEEPTIME);

pbuf(&buf,request,rlet,wlet,ct,cct,mt,name);
pclosesend(&sa,&sd,&buf,fd,updated,crt);

APPENDIX A. PROGRAM 108

exit(0);
default: /* parent */
return TIMEOUT;

}
}
else
return TIMEOUT;

}

tryagain:

/* send request to server and receive reply */

pbuf(&buf,request,rlet,wlet,ct,cct,mt,name);
if(prequest(&sa,&sd,&buf)==NOT_OK||buf.status==NOT_OK) {

if(etb==0) {
if(pdelname(fp)==NOT_OK) {

fclose(fp);
unlock_file(fd);
close_sock(sd);
return NOT_OK;

}
if(fclose(fp)==EOF) {
pso_errno=PSO_ENOTCLOSED;
unlock_file(fd);
close_sock(sd);
return NOT_OK;

}
if(unlock_file(fd)==NOT_OK) {

close_sock(sd);
return NOT_OK;

}
commstat=DISCONNECTED;

}
else {

while((commstat=ptaco())!=DISCONNECTED&&et<t) {
sleep(SLEEPTIME);
time(&t);

}

if(commstat!=DISCONNECTED&&et>t) {
close_sock(sd);
goto tryagain;

}
}

}

if(commstat==DISCONNECTED) {
if(updated) {

switch(fork()) {
case -1:
pso_errno=PSO_EERROR;
return NOT_OK;

case 0: /* child process - wait for better communication */
fclose(stdin);
fclose(stderr);

#ifdef SYSV5
signal(SIGCLD,SIG_IGN);

#else
#ifndef LINUX

signal(SIGCLD,sig_child);
#else

APPENDIX A. PROGRAM 109

signal(SIGCLD,SIG_IGN);
#endif
#endif

while((commstat=ptaco())!=DISCONNECTED)
sleep(SLEEPTIME);

pbuf(&buf,request,rlet,wlet,ct,cct,mt,name);
pclosesend(&sa,&sd,&buf,fd,updated,crt);
exit(0);

default: /* parent */
close_sock(sd);
return TIMEOUT;

}
}
else {

close_sock(sd);
return TIMEOUT;

}
}

switch(buf.request) {
case INCONSISTENT: /* has been updated on the server in the mean time */
case ISLOCKED: /* has been locked on the server in the mean time */
status=FAILURE;
break;

case CONSISTENT:
if(updated) {

if(pdelname(fp)==NOT_OK) {
pso_errno=PSO_EERROR;
fclose(fp);
break;

}
if(fclose(fp)==-1) {

pso_errno=PSO_EERROR;
break;

}
else {
pbuf(&buf,RECV_FILE,0L,0L,buf.ct,buf.cct,buf.mt,name);
if(prequest(&sa,&sd,&buf)==NOT_OK||buf.status==NOT_OK) {
if(buf.status==NOT_OK)

pso_errno=PSO_ESERVERERROR;
break;

}
else {

if(send_file(sd,name)==NOT_OK)
break;

else {
pbuf(&buf,SEND_STAT,0L,0L,buf.ct,buf.cct,buf.mt,name);
if(prequest(&sa,&sd,&buf)==NOT_OK||buf.status==NOT_OK) {
if(buf.status==NOT_OK)

pso_errno=PSO_ESERVERERROR;
break;

}
else {

if(wlet>t)
wlet=t;

if(update_info(fd,buf.mt,buf.ct,buf.cct,ret,wlet,crt)==NOT_OK)
break;

else {
status=SUCCESS;
break;

}

APPENDIX A. PROGRAM 110

}
}

}
}

}
else {

if(request==READ_CLOSE)
if(rlet>t)

rlet=t;
else

rlet=ret;
if(request==WRITE_CLOSE)
if(wlet>t)

wlet=t;
else

wlet=wet;
if(update_info(fd,buf.mt,buf.ct,buf.cct,rlet,wlet,crt)==NOT_OK)

break;
else {

status=SUCCESS;
break;

}
}

default:
pso_errno=PSO_EUNKNOWNREPLY;

}

if(pso_errno==PSO_ENOERROR) {
if(!updated) {
if(pdelname(fp)==NOT_OK) {

fclose(fp);
unlock_file(fd);
close_sock(sd);
return NOT_OK;

}
if(fclose(fp)==EOF) {

pso_errno=PSO_ENOTCLOSED;
unlock_file(fd);
close_sock(sd);
return NOT_OK;

}
}
if(unlock_file(fd)==NOT_OK) {
close_sock(sd);
return NOT_OK;

}
close_sock(sd);
return status;

}
else {

if(!updated) {
pdelname(fp);
fclose(fp);

}
unlock_file(fd);
close_sock(sd);
return NOT_OK;

}
}

int p_lock(name,mode,letb)

APPENDIX A. PROGRAM 111

char *name,*mode;
int letb; /* lock expiration time bound (in minutes) */

{
/* ... */

}

int p_unlock(name,mode)
char *name,*mode;

{
/* ... */

}

int p_remove(name)
char *name;

{
/* ... */

}

int p_stat(name,mt,ct,cct,ret,wet)
char *name;
long *mt,*ct,*cct,*ret,*wet;

{
int cached;
long crt;
int fd;

pso_errno=PSO_ENOERROR;

if((cached=read_info(name,mt,ct,cct,ret,wet,&crt,&fd))==NOT_OK)
return NOT_OK;

else {
if(!cached)

if(delete_info(name)==NOT_OK)
return NOT_OK;

if(unlock_file(fd)==NOT_OK)
return NOT_OK;

else
return cached;

}
}

int p_comm()
{

pso_errno=PSO_ENOERROR;

return ptaco();
}

long p_time(flag)
int flag;

{
/* ... */

}
/* END library subroutines **/

Appendix B

Examples

Bank Account

Here is the classical Bank Account example as it is presented by Oracle
in [36, Ch.3, p.27]:

“A transaction is a user-defined series of logically related SQL
operations. All changes brought by the SQL operations are either
undone or made permanent at the same time.

You perform transactions with the COMMIT or ROLLBACK
statements. You use these statements to ensure that either all or
none of your changes are made to the database.

A simple example of a transaction involves transferring money
from one bank account to another. The transaction, which typ-
ically requires two UPDATEs, is to debit account A and credit
account B.”

“. . . , after you credit account B, you issue the COMMIT com-
mand, making the changes permanent. Only then do the changes
become visible to other users.”

“. . . , if you cannot credit account B because of a logical problem,
you execute the ROLLBACK statement. This undoes the change
to account A, thereby restoring the original data.”

112

APPENDIX B. EXAMPLES 113

Now, imagine a database table BankAccounts defined by:

/* Bank accounts are identified by unique Id’s */
CREATE TABLE BankAccounts (

Id <INTERNAL> NOT NULL,
Balance MONEY NOT NULL

);
CREATE UNIQUE INDEX BankAccounts_IX1 ON BankAccounts(Id);

Then, here is how I would write the transaction (an Oracle SQL*Plus
script using PL/SQL):

DECLARE
unable_to_deposit EXCEPTION;
unable_to_withdraw EXCEPTION;

BEGIN
-- Transfer $100 from bank account <A> to bank account
UPDATE BankAccounts
SET Balance=Balance-100 -- Withdraw $100
WHERE Id=<A>
AND Balance>=100; -- , if possible

IF SQL%ROWCOUNT<>1 THEN
RAISE unable_to_withdraw;

END IF;
UPDATE BankAccounts
SET Balance=Balance+100 -- Deposit $100
WHERE Id=;
IF SQL%ROWCOUNT<>1 THEN

RAISE unable_to_deposit;
END IF;
COMMIT; -- End transaction making the changes permanent

EXCEPTION
WHEN unable_to_withdraw OR unable_to_deposit THEN

ROLLBACK; -- End transaction undoing any changes
END;
/

Note: In the above example BEGIN and END do not mark the beginning and
end of the transaction. They mark the beginning and end of the PL/SQL-
block. The transaction associated with the SQL*Plus-script above is implic-
itly begun before execution of the first SQL-statement (UPDATE . . .) and is
ended explicitly with the COMMIT or the ROLLBACK.

APPENDIX B. EXAMPLES 114

This is how the Bank Account example is presented in [52, p.145]:

“Now look at a modern banking application that updates an on-
line data base in place. The customer calls up the bank using
a PC with a modem with the intention of withdrawing money
from one account and depositing it in another. The operation is
performed in two steps:

1. Withdraw(amount,account1).

2. Deposit(amount,account2).

If the telephone line is broken after the first one but before the
second one, the first account will have been debited but the second
one will not have been credited. The money vanishes into thin
air.

Being able to group these two operations in an atomic transaction
would solve the problem. Either both would be completed, or
neither would be completed. The key is rolling back to the initial
state if the transaction fails to complete.”

and [52, p.225-226]:

“The classical example of where transactions make programming
much easier is in a banking system. Imagine that a certain bank
account contains 100 dollars, and that two processes are each
trying to add 50 dollars to it. In an unconstrained system, each
process might simultaneously read the file containing the current
balance (100), individually compute the new balance (150), and
successively overwrite the file with this new value. The final result
could either be 150 or 200, depending on the precise timing of
the reading and writing. By grouping all the operations into a
transaction, interleaving cannot occur and the final result will
always be 200.”

The two different situations could be sketched:

Situation 1 - Interleaving processes
Process 1 Process 2
READ(amount,account)

READ(amount,account)
WRITE((amount+$50),account)

WRITE((amount+$50),account)
. . .

. . .

APPENDIX B. EXAMPLES 115

Situation 2 - Isolated transactions
Process 1 Process 2
BEGIN TRANSACTION

READ(amount,account)
WRITE((amount+$50),account)

END TRANSACTION
BEGIN TRANSACTION

READ(amount,account)
WRITE((amount+$50),account)

END TRANSACTION

make

This example is taken from [30]:

“Consider the following scenario of a partitioned read/write con-
flict. A programmer Joe caches relevant files on his Coda laptop
for a weekend trip. While disconnected, he edits some source
files and builds a new version of repair, a file resolution pro-
gram. However one of the libraries libresolve.a that is linked
in was updated on the servers during Joe’s absence. Here the link-
ing and the updating of libresolve.a constitute a partitioned
read/write conflict, which not only leaves repair in a possible
inconsistent state but also may cause cascading inconsistencies
had Joe used his repair program to mutate other objects. It
would be helpful if Joe is at least notified about the possible
inconsistency when he reconnects the laptop to the servers.”

Other references to this scenario can be found in [34] and in [20]. A similar
scenario is used in [31].

Mail Reader

An existing application used directly or ported, e.g., a mail reader:

ftp://ftp.diku.dk/pub/linux/slackware/source/n/elm/elm2.4.tar.gz

APPENDIX B. EXAMPLES 116

Blackboard

This “Real World Example” comes from [2]:

“A blackboard is used for leaving messages to people.

When we visit the blackboard we can read from it and write to
it (and make a photo of it).

When we are left (disconnected) we can watch an old photo of
the blackboard and write messages onto the photo.

When we visit the blackboard we can decide which of the mes-
sages on the photo that are still actual to write to the blackboard.

Too old photos are not acceptable and to long time until coming
back to the blackboard is not acceptable.

-> Time seems in most cases important!

-> The world consists of cooperative processes!”

A “Class Example” is also given:

class Blackboard(rows,columns: Integer)->(self: Blackboard)
const Interface:=[Write,Erase,Read]
const ReadBound:=30*60 {seconds}
const WriteBound:=20*60
const Board:=Arrayd2D(rows,columns,var Char)

function Read(x,y: Integer)->(t: Text)
{read (local) board}

end

operation Erase()
{erase (local) board}

end

operation Write(x,y: Integer, t: Text)
{check for space and update (local) board}

end

operation MergeReplica(rep: Blackboard)
{executed for primary replica}

end
end

APPENDIX B. EXAMPLES 117

Note: Instead of making a photo when you visit (connect to) the blackboard
(the server) you might read what is on the blackboard (shared data) and
write a copy of what you find interesting (or might find interesting at a later
stage) on your own miniature blackboard (client cache). When you are away
(disconnected) from the blackboard, you can write messages (updates) onto
the miniature blackboard.

While away, you might at some point think that the information on the
miniature blackboard has become outdated and decide to phone (establish
a weak connection) someone1 who can confirm whether the information is
out-of-date or not. If it is outdated, and you can afford the larger phone bill
you can decide to retrieve the newest information and update the miniature
blackboard. On the other hand if it was not long ago you left the blackboard
or you do not have the strength to do an “update session” over the phone
you might think that the information you have will suffice.

When you return (re-connect) to the blackboard, you decide to let one of
your obedient students2 transfer your writings on the miniature blackboard
to the big blackboard. The student runs into problems if there is discrepancy
between what is on the blackboard and what you have written. If the student
is clever enough she solves any inconsistencies herself (automatically), but, if
the problem is really bad, she might return to you and let you do it yourself
(manually).

1In my case the server, so we have a sort of talking blackboard—NOW THAT IS
SOMETHING NEW!

2The server again, this blackboard is ending up very sophisticated—INDEED!

Appendix C

Flow Diagrams

See attachment...

118

1

FLOW CHARTS

The following flow charts illustrate the decisions made during the execution of the PeStO file
operations: p_open, p_close, p_lock, and p_unlock. The charts are not actual flow
diagrams for the program (but close). The decisions are based on either simple questions that can be
answered with “yes” or “no”, i.e.,

Is the file cached?

or the “success” or “failure” of communication with the server, i.e.,

REQUEST STATUS FROM SERVER

Note, that an arrow pointing from a communication box, such as the one above, is not the server’s
reply.

When an arrow points into a solid box, such as

OPEN FILE FOR WRITING (2)

then the flow branches, and in the above case the flow is continued on one of the pages labeled
OPEN FILE FOR WRITING at the arrow marked with the number in the brackets, i.e.,

Questions labeled in italic and bold, i.e.,

Are we (fully) CONNECTED?

are answered by utilizing the TACO link monitoring facilities.

All flows end with a return command, that gives back control to the client application using the
PeStO file operation. If an error occured, then the error number (pso_errno) is also given. Not all
things are shown in the diagrams; technicalities such as what to be done when the file is not found,
the fact that it is not necessary to receive the file from the server if it is going to be rewritten from
scratch, and other details are not given.

I think the charts are quite instructive and give a good insight to what actually goes on!

2

2

Is it write mode?

OPEN FILE FOR WRITING (1)

Is it read mode?

Is the file cached?

PSO_EBADMODE
return NULL;

FILE *p_open(char *name,char *mode,int tb)

P_OPEN START

OPEN FILE FOR READING (5)

Is it an optimistic read?

OPEN FILE FOR READING (3)

yes

no

no

yes

yes

no

no

yes

OPEN FILE FOR READING (1)

3

Is the file read- or writelocked?

Are we (fully) CONNECTED?

OPEN FILE FOR READING (2)

P_OPEN OPEN FILE FOR READING 1(4)

no

yes

no

1

return fopen(name,mode);

yes

REQUEST STATUS FROM SERVER
failure

success

Is the file consistent?
yes

return fopen(name,mode);

no

RECEIVE FILE FROM SERVER

success

failure

Is the file within the specified time bound? return fopen(name,mode);
yes

no

PSO_ENOTWITHIN
return NULL;

2

4

Is a strict read?

P_OPEN OPEN FILE FOR READING 2(4)

no

3

REQUEST STATUS FROM SERVER

failure

success

Is the file consistent?

yes
return fopen(name,mode);

no

RECEIVE FILE FROM SERVER

success

failure

return fopen(name,mode);
yes

PSO_ENOTCONSISTENT
return NULL;

OPEN FILE FOR READING (4)

yes

Is the file read- or writelocked?

Are we DISCONNECTED?

no

no

yes

PSO_ENOTCONSISTENT
return NULL;

Is the file writelocked?

no

PSO_EISLOCKED
return NULL;

yes

5

Is the file readlocked?

P_OPEN OPEN FILE FOR READING 3(4)

no

4

REQUEST STATUS FROM SERVER

failure

success

Is the file consistent?

yes
PSO_EWASLOCKED
return NULL;

no

RECEIVE FILE FROM SERVER

success

failure

return fopen(name,mode);
yes

PSO_ENOTCONSISTENT
return NULL;

Are we DISCONNECTED?

no

no

yes

PSO_ENOTLOCKED
return NULL;

Is the file writelocked?

no

PSO_EISLOCKED
return NULL;

yes

Is the file writelocked?
yes

PSO_EWASWRITELOCKED
return NULL;

Did the writelock succeed?

yes

PSO_ENOTLOCKED
return NULL;

no

6
P_OPEN OPEN FILE FOR READING 4(4)

5

REQUEST STATUS FROM SERVER

failure

success

RECEIVE FILE FROM SERVER

failure

PSO_ENOTCACHED
return NULL;

Are we DISCONNECTED?

no

yes

PSO_ENOTCACHED
return NULL;

Is the file writelocked?

no

PSO_EISLOCKED
return NULL;

yes

Did the readlock succeed?

yes

PSO_ENOTLOCKED
return NULL;

no

Is it a pessimistic read?

yes

no

return fopen(name,mode);
succes

7

Is the file cached?

OPEN FILE FOR WRITING (8)

Is it an optimistic write?

OPEN FILE FOR WRITING (4)

P_OPEN OPEN FILE FOR WRITING 1(5)

no

yes

no

yes

Is the file writelocked?

no

yes
return fopen(name,mode);

Are we (fully) CONNECTED?

OPEN FILE FOR WRITING (2)

yes
no

success

REQUEST STATUS FROM SERVER
failure

OPEN FILE FOR WRITING (3)

1

8

Was the file consistent on last check?

Was the file read- or writelocked (by another client)?

Is the file consistent?

P_OPEN OPEN FILE FOR WRITING 2(5)

yes
no

no

2

PSO_ENOTCONSISTENT
return NULL;

return fopen(name,mode);

3

yes
PSO_EISLOCKED
return NULL;

yes
return fopen(name,mode);

no

failure

RECEIVE FILE FROM SERVER

success

PSO_ENOTCONSITENT
return NULL;

Is a strict write?

4

OPEN FILE FOR WRITING (6)

no

yes

OPEN FILE FOR WRITING (5)

Is the file within the specified time bound?
no

PSO_ENOTWITHIN
return NULL;

yes

9

Is the file readlocked?

P_OPEN OPEN FILE FOR WRITING 3(5)

no

5

Are we DISCONNECTED? yes

PSO_ENOTCONSISTENT
return NULL;

failure

success

Was the file read- or writelocked (by another client)?

Is the file writelocked?

6

no

no

REQUEST STATUS FROM SERVER

Is the file writelocked?
yes

return fopen(name,mode);

yes

no

PSO_EISLOCKED
return NULL;

yes

no

Is the file consistent?
yes

return fopen(name,mode);

RECEIVE FILE FROM SERVER
PSO_ENOTCONSISTENT

return NULL;
failur

success

yes
PSO_EWASLOCKED
return NULL;

no

no

Is the file readlocked?
yes

PSO_EWASREADLOCKED
return NULL;

OPEN FILE FOR WRITING (7)

10
P_OPEN OPEN FILE FOR WRITING 4(5)

7

Are we DISCONNECTED?
PSO_ENOTLOCKED
return NULL;

success

Was the file read- or writelocked (by another client)?

Are we DISCONNECTED?

8

no

REQUEST STATUS FROM SERVER

no

yes

PSO_EISLOCKED
return NULL;

yes

no

Is the file consistent?
yes

return fopen(name,mode);

RECEIVE FILE FROM SERVER
PSO_ENOTCONSISTENT

return NULL;
failur

success

yes

Did the writelock suceed?
PSO_ENOTLOCKED
return NULL;

no
yes

no

REQUEST STATUS FROM SERVER

failure

success

OPEN FILE FOR WRITING (9)

Is it an optimistic write?
yes

no

PSO_ENOTCACHED
return NULL;

return fopen(name,mode);

11
P_OPEN OPEN FILE FOR WRITING 5(5)

9

Was the file read- or writelocked (by another client)?
PSO_EISLOCKED
return NULL;

no

yes

Is it a pessimistic write?

yes

Did the writelock succeed?
PSO_ENOTLOCKED
return NULL;no

yes

success

RECEIVE FILE FROM SERVER

no

return fopen(name,mode);

PSO_ENOTCACHED
return NULL;failure

12

Is the file cached?

int p_close(FILE *fp,int etb)

P_CLOSE START

PSO_ENOTCACHED
return NOT_OK;

no
yes

Was the file consistent on last check?
PSO_ENOTCONSISTENT

return NOT_OK;
no

yes

Are we DISCONNECTED?

no

START (1)

yes

Is the expiration time bound zero?

no

CLOSE FILE (2)

yes

Create child process waiting on a connection, and
return TIMEOUT;

1

2

REQUEST STATUS FROM SERVER

failure

START (2)

success

Has the file been updated on the server? return FAILURE;

no
yes

CLOSE FILE (1)

13
P_CLOSE CLOSE FILE 1(1)

1

Is it a close for writing, and has the file
 been read- or writelocked on the server?

return FAILURE;

2

yes

Is it a close for writing, and has
the file been updated on the client?

no

yes

SEND FILE TO SERVER
failur

success

return SUCCESS;

no

return FAILURE;

Are we DISCONNECTED?

no

START (1)

yes

Is the expiration time bound exceeded?

yes

no

Create child process waiting on a connection, and
return TIMEOUT;

14

Is the file cached?

LOCK FILE (4)

Is it readlock mode?

int p_lock(char *name,char *mode,int tb)

P_LOCK START

LOCK FILE (2)

Is the file readlocked?

no

yes

yes

no

no

PSO_EWASLOCKED
return NOT_OK;

no

yes

Are we DISCONNECTED?
PSO_ENOTLOCKED
return NOT_OK;yes

Is the file writelocked?
PSO_EWASWRITELOCKED

return NOT_OK;

no

yes

REQUEST LOCK ON SERVER

succes

failure

LOCK FILE (1)

PLOCK LOCK FILE 1(3)

no

1

Did the readlock succeed?

Is it writelock mode?

2

Was the file writelocked (by another client)?
yes

PSO_EISLOCKED
return NOT_OK;

yes

no
PSO_ENOTLOCKED
return NOT_OK;

no
PSO_EBADMODE

return NOT_OK;

yes

Is the file writelocked?
yes

PSO_EWASLOCKED
return NOT_OK;

no

Is the file readlocked?
yes

PSO_EWASREADLOCKED
return NOT_OK;

no

Are we DISCONNECTED?
yes

PSO_ENOTLOCKED
return NOT_OK;

no

REQUEST LOCK ON SERVER

succes

failure

LOCK FILE (3)

Was the file read- or writelocked (by another client)?
yes

PSO_EISLOCKED
return NOT_OK;

no

LOCK FILE (5)

PLOCK LOCK FILE 2(3)

3

Did the writelock succeed?

Is it read- or writelock mode?

4

yes

no
PSO_ENOTLOCKED
return NOT_OK;

no
PSO_EBADMODE

return NOT_OK;

yes

Was the file writelocked?
yes

PSO_EISLOCKED
return NOT_OK;

no

Is it writelock mode and
was the file readlocked?

yes

no failure

Did the read- or writelock succeed?
no

PSO_ENOTLOCKED
return NOT_OK;

yes

Are we DISCONNECTED?
yes

PSO_ENOTLOCKED
return NOT_OK;

REQUEST LOCK ON SERVER

no

succes

LOCK FILE (5)

LOCK FILE (6)

PLOCK LOCK FILE 3(3)

5

Is the file consistent?

6 no

yes
return OK;

RECEIVE FILE FROM SERVER

succes

failur

PSO_ENOTLOCKED
return NOT_OK;

15

Is the file cached?

Is it readlock mode?

int p_unlock(char *name,char *mode)

P_UNLOCK START

Is the file readlocked?

yes

yes

no

no

PSO_ENOTLOCKED
return NOT_OK;

yes

no

Are we DISCONNECTED?
PSO_ENOTUNLOCKED

return NULL;
yes

REQUEST UNLOCK ON SERVER

succes

failure

PSO_ENOTLOCKED
return NOT_OK;no

Is it writelock mode?

yes

PSO_EBADMODE
return NOT_OK;no

Is the file writelocked?
PSO_ENOTLOCKED
return NOT_OK;

no
yes

START (1)

1

Did the read- or writeunlock succeed?
PSO_ENOTUNLOCKED
return NOT_OK;

no

return OK;

Appendix D

Figures from Chapter 5

See attachment...

119

Figure 5.4: No read/write conflict

libresolve.a <MTS=0>
resolve.c <MTs=0>
resolve <MTs=0>

open(libresolve.a,”w”,0)

libresolve.a
<CT1=2,CCT1=2,MTC1=0>

close(libresolve.a,0)

libresolve.a <MTS=4>

libresolve.a
<CT1=4,CCT1=4,MTC1=4> open(libresolve.a,”r”,0)

libresolve.a
<CT2=5,CCT2=5,MTC2=4>

close(libresolve.a,0)

libresolve.a
<CT2=7,CCT2=7,MTC2=4>

 open(resolve.c,”w”) close(resolve.c) open(resolve,”w”) close(resolve)

 write(resolve.c)

 write(libresolve.a)

 read(libresolve.a)

1 2 3 4 5 6 7

 build(resolve)

SERVER

CLIENT 1 (BILL)

CLIENT 2 (JOE)

Figure 5.5: Undetactable read/write conflict

libresolve.a <MTS=0>
resolve.c <MTs=0>
resolve <MTs=0>

open(libresolve.a,”w”,0)

libresolve.a
<CT1=2,CCT1=2,MTC1=0>

close(libresolve.a,0)

libresolve.a <MTS=7>

close(libresolve.a,0)

libresolve.a
<CT2=5,CCT2=5,MTC2=0>

 open(resolve.c,”w”) close(resolve.c) open(resolve,”w”) close(resolve)

 write(resolve.c)

 write(libresolve.a)

open(libresolve.a,”r”,0)

libresolve.a
<CT2=3,CCT2=3,MTC2=0>

 read(libresolve.a)

1 2 3 4 5 6 7

 build(resolve)

SERVER

CLIENT 1 (BILL)

CLIENT 2 (JOE)

libresolve.a
<CT1=7,CCT1=7,MTC1=7>

NB

Figure 5.6: Detectable read/write conflict

libresolve.a <MTS=0>
resolve.c <MTs=0>
resolve <MTs=0>

open(libresolve.a,”w”,0)

libresolve.a
<CT1=2,CCT1=2,MTC1=0> close(libresolve.a,0)

libresolve.a
<CT2=7,CCT2=7,MTC2=0>

 open(resolve.c,”w”) close(resolve.c) open(resolve,”w”) close(resolve)

 write(resolve.c)

 write(libresolve.a)

open(libresolve.a,”r”,0)

libresolve.a
<CT2=3,CCT2=3,MTC2=0>

 read(libresolve.a)

1 2 3 4 5 6 7

 build(resolve)

SERVER

CLIENT 1 (BILL)

CLIENT 2 (JOE)

close(libresolve.a,0)

libresolve.a <MTS=5>

libresolve.a
<CT1=5,CCT1=5,MTC1=5>

NB: MTS<>MTC2

References

[1] The AMIGOS Project:
<http://www.diku.dk/distlab/amigos/>
—as it appeared: December 1995

[2] Birger Andersen:
The Next Distributed Systems
Department of Computer Science, University of Copenhagen, Denmark
Notes: Braga, October 95

[3] Birger Andersen:
Personal e-mail correspondence
Department of Computer Science, University of Copenhagen, Denmark,
November 1996

[4] George Coulouris, Jean Dollimore & Tim Kindberg:
Distributed Systems - Concepts and Design
2nd edition, Addison-Wesley, 1994

[5] C. J. Date:
An Introduction to Database Systems
5th edition, Addison-Wesley, 1990

[6] Susan B. Davidson, Hector Garcia-Molina & Dale Skeen:
Consistency in Partitioned Networks
Computing Surveys, 17(3), September 1985

[7] Marc E. Fiuczynski & David Grove:
A Programming Methodology for Disconnected Operation
Department of Computer Science, University of Washington
March 8, 1994

[8] George H. Forman & John Zahorjan:
The Challenges of Mobile Computing

120

REFERENCES 121

Department of Computer Science, University of Washington
UW CSE Tech Report #93-11-03, March 9, 1994

[9] Victor P. Guedes & Francisco Moura:
Replica Control in MIo-NFS
Deparmento de Informática,Universidade de Minho, Braga - Portugal
ECOOP’95 Workshop on Mobility and Replication
<ftp://ftp.diku.dk/diku/distlab/amigos/mionfs.ps>

[10] Jørgen Sværke Hansen, Torben Reich & Birger Andersen:
Semi-Connected TCP/IP in a Mobile Computing Environment
AMIGOS Position Paper
Department of Computer Science, University of Copenhagen, Denmark
<ftp://ftp.diku.dk/diku/distlab/amigos/sctcp.ps>

[11] Jørgen Sværke Hansen & Torben Reich:
Semi-Connected TCP/IP in a Mobile Computing Environment
Master’s Thesis in Computer Science
Department of Computer Science, University of Copenhagen, Denmark
DIKU Project no. 95-6-11, June 10, 1996
<ftp://ftp.diku.dk/diku/distlab/amigos/diku95-6-11.ps.gz>

[12] Jørgen Sværke Hansen:
Users Guide for TACO
Department of Computer Science, University of Copenhagen, Denmark
DistLab Paper, November 15, 1996

[13] John S. Heidemann et al.:
Primarily Disconnected Operation: Experiences with Ficus
Department of Computer Science, University of California, Los Angeles
Proc. of the 2nd Workshop on Management of Replicated Data, IEEE,
November 1992

[14] Peter Honeyman:
Taking a Little Work Along
Center for Information Technology Integration, University of Michigan,
Ann Arbor
CITI Technical Report 91-5, August, 1991
<ftp://citi.umich.edu/pub/techreports/citi-tr-91-5.ps.Z>

[15] Peter Honeymann, Larry Huston, Jim Rees & Dave Bachmann:
The Little Work Project

REFERENCES 122

Proc. of the 3rd IEEE Workshop on Workstation Operating Systems,
April 1992

[16] L. B. Huston & P. Honeymann:
Disconnected Operation for AFS
Center for Information Technology Integration, University of Michigan,
Ann Arbor
CITI Technical Report 93-3, June 18, 1993
<ftp://citi.umich.edu/pub/techreports/citi-tr-93-3.ps.Z>

[17] L. B. Huston & P. Honeymann:
Peephole Log Optimization
Center for Information Technology Integration, University of Michigan,
Ann Arbor
CITI Technical Report 95-3, January 26, 1995
<ftp://citi.umich.edu/pub/techreports/citi-tr-95-3.ps.Z>

[18] L. B. Huston & P. Honeymann:
Partially Connected Operation
Center for Information Technology Integration, University of Michigan,
Ann Arbor
CITI Technical Report 95-5, May 25, 1995
<ftp://citi.umich.edu/pub/techreports/citi-tr-95-5.ps.Z>

[19] L. B. Huston & P. Honeymann:
Communication and Consistency in Mobile File Systems
Center for Information Technology Integration, University of Michigan,
Ann Arbor
CITI Technical Report 95-11, October 5, 1995
<ftp://citi.umich.edu/pub/techreports/citi-tr-95-11.ps.Z>

[20] Cristian Ionitoiu:
Mobile Agents Based Mobile Computing
Computer Science Department, Politechnica University of Timisoara
Slides: University of Copenhagen, May 1996

[21] Brian W. Kernighan & Dennis M. Ritchie:
The C (ANSI-C) Programming Language
2nd edition, Prentice Hall, 1988.

[22] James J. Kistler & M. Satyanarayanan:
Disconnected Operation in the Coda File System

REFERENCES 123

Carnegie Mellon University
ACM Transactions on Computer Systems, 10(1):3-25, February 1992

[23] Pernille Knudsen & Michael G. Sørensen:
Distribueret filsystem
Datalogisk Institut, Københavns Universitet, November 1994

[24] Henning Koch, Lars Krombholz & Oliver Theel:
A Brief Introduction into the World of ‘Mobile Computing’
Department of Computer Science, University of Darmstadt, Germany
THD-BS-1993-03, May 21, 1993

[25] Geoffrey H. Kuenning, Gerald J. Popek, Peter L. Reiher:
An Analysis of Trace Data for Predictive File Caching in Mobile Com-
puting
Computer Science Department, University of California, Los Angeles
Technical Report CSD-940016, April 1994

[26] Geoffrey H. Kuenning:
The Design of the Seer Predictive Caching System
Computer Science Department, University of California, Los Angeles
IEEE Workshop on Mobile Computing Systems and Applications, 1994

[27] Puneet Kumar & M. Satyanarayanan:
Log-Based Directory Resolution in the Coda File System
School of Computer Science, Carnegie Mellon University
CMU-CS-91-164, December 14, 1991
<ftp://reports.adm.cs.cmu.edu/usr/anon/1991/CMU-CS-91-164.ps>

[28] Puneet Kumar & M. Satyanarayanan:
Flexible and Safe Resolution of File Conflicts
School of Computer Science, Carnegie Mellon University
CMU-CS-94-214, November 1994
<ftp://reports.adm.cs.cmu.edu/usr/anon/1994/CMU-CS-94-214.ps>

[29] H. T. Kung & John T. Robinson:
On Optimistic Methods for Concurrency Control
ACM Transactions on Database Systems, 6(2):213-226, June 1981

[30] Qi Lu & M. Satyanarayanan:
Isolation-Only Transactions for Mobile Computing
School of Computer Science, Carnegie Mellon University
ACM Operating Systems Review, 28(2):81-87, April 1994

REFERENCES 124

[31] Qi Lu & M. Satyanarayanan:
Improving Data Consistency in Mobile Computing Using Isolation-Only
Transactions
School of Computer Science, Carnegie Mellon University, Pittsburgh
CMU-CS-95-126, March 1995
<ftp://reports.adm.cs.cmu.edu/usr/anon/1995/CMU-CS-95-126.ps>

[32] Raquel Menezes, Carlos Baquero & Francisco Moura:
A Portable Lightweight Approach to NFS Replication
Proc. of ROSE’94 Conference, Bucharest, November 1994.

[33] Lily B. Mummert, Maria R. Ebling & M. Satyanarayanan:
Exploiting Weak Connectivity for Mobile File Access
School of Computer Science, Carnegie Mellon University
CMU-CS-95-185, 1995
<ftp://reports.adm.cs.cmu.edu/usr/anon/1995/CMU-CS-95-185.ps>

[34] Jeppe Damkjær Nielsen:
Transactions in Mobile Computing
Department of Computer Science, University of Copenhagen, Denmark
Written Work no. 95-2-11, spring 1995.
<ftp://ftp.diku.dk/diku/distlab/amigos/diku-95-2-11.ps.gz>.

[35] Brian D. Noble & M. Satyanarayanan:
An Empirical Study of a Highly Available File System
School of Computer Science, Carnegie Mellon University
CMU-CS-94-120, February 1994
<ftp://reports.adm.cs.cmu.edu/usr/anon/1994/CMU-CS-94-120.ps>

[36] ORACLE:
PL/SQL User’s Guide and Reference
Version 1.0, April 1989 (Revised November, 1990)

[37] ORACLE:
RDBMS Database Administrator’s Guide
Version 6.0, November 1988 (Revised October, 1990)

[38] ORMC’96 discussions
Workshop on Object Replication and Mobile Computing
OOPLSA’96, San José, California, October 7, 1996

[39] Karin Petersen et al.:
Bayou: Replicated Database Services for World-wide Applications
<http://mosquitonet.stanford.edu/sigops96/papers/petersen.ps>

REFERENCES 125

[40] Evaggelia Pitoura & Bharat Bhargava:
Maintaining Consistency of Data in Mobile Distributed Environments
Department of Computer Sciences, Purdue University, West Lafayette
15th Int. Conference on Distributed Computing Systems (ICDCS), 1995
Long version

[41] John Saldanha:
A File System for Mobile Computing
Dissertation Proposal
Department of Computer Science, University of Notre Dame, Indiana
Technical Report 93-17, December 1993

[42] M. Satyanarayanan et al.:
Experience with Disconnected Operation in a Mobile Computing Environ-
ment
School of Computer Science, Carnegie Mellon University
Proc. of the Mobile & Location-Independent Computing Symposium
USENIX Association, August 2-3, 1993

[43] M. Satyanarayanan, Brian Noble, Puneet Kumar & Morgan Price:
Application-Aware Adaptation for Mobile Computing
School of Computer Science, Carnegie Mellon University
CMU-CS-94-183, July 28, 1994
<ftp://reports.adm.cs.cmu.edu/usr/anon/1994/CMU-CS-94-183.ps.Z>

[44] M. Satyanarayanan:
Mobile Information Access
School of Computer Science, Carnegie Mellon University
CMU-CS-96-107, January 1996
IEEE Personal Communications 3(1), February 1996
<ftp://reports.adm.cs.cmu.edu/usr/anon/1996/CMU-CS-96-107.ps>

[45] M. Satyanarayanan:
Fundamental Challenges in Mobile Computing
School of Computer Science, Carnegie Mellon University
CMU-CS-96-111, 1996
<ftp://reports.adm.cs.cmu.edu/usr/anon/1996/CMU-CS-96-111.ps>

[46] Alex Siegel, Kenneth Birman & Keith Marzullo:
Deceit: A Flexible Distributed File System
Cornell University, Ithaca, NY
December 7, 1989

REFERENCES 126

[47] Avi Silberschatz & Peter Galvin:
Operating System Concepts
4th edition, Addison-Wesley, 1994

[48] W. Richard Stevens:
UNIX Network Programming
Prentice Hall, 1990.

[49] Sun Software Technical Bulletin, February 1993:
“PC-NFS: Open Network Computing for PCs”
CD-ROM: “SunSolve 2.1, Sun Technical Bulletin: Dec 91-Oct 93”, 1993
<http://www.diku.dk/software/sunos413-stb/1119.ps>.

[50] Michael Svendsen:
Eksempel client/server applikation
DistLab e-mail
Datalogisk Institut, Københavns Universitet.

[51] Michael G. Sørensen:
A Model for Multi-Level Consistency
OOPSLA’96 Workshop on Object Mobility and Replication (ORMC’96)

[52] Andrew S. Tanenbaum:
Distributed Operating Systems
Prentice-Hall, 1995.

[53] Douglas B. Terry et al.:
Managing Update Conflicts in Bayou, a Weakly Connected Replicated
Storage System
Computer Science Laboratory, Xerox Research Center, Palo Alto

[54] Douglas B. Terry
Personal discussion
Xerox PARC Research Center, October 14, 1996.

Index

“Most books have indexes;
most technical reports don’t.
They should.
Any nonfiction work of more
then twenty or so pages that
is worth reading deserves an
index.”
– Leslie Lamport (LATEX2ε),
127

A Mobility-Transparent Model (for
Consistency), 5

ACID, 39
Advanced Mobile Integration in Gen-

eral Operating Systems, see
AMIGOS

AMIGOS, 4–6, 13, 14
“Transactions in Mobile Com-

puting”, 5
TACO, see TACO

atomicity, 39
average set, 37

bandwidth, 17
Bayou, 13, 30, 37
boundaries (of transactions), see con-

currency control, boundaries

cache size, 15
caching, 36–37

average set, 37
critical set, 36
current working set, 36

full set, 37
LRU, 37

challenges, 3–6
AMIGOS, 4
mobile computing, 3

classification of files, 25–26
client/server

communication, 76
TACO, 76

closing, 61–62
expiration time bound, 61

Coda, 13–15, 30, 36, 37, 44
communication, 17–21

connected, 18
disconnected, 19
mobility, 20
networks, 17

bandwidth, 17
latency, 17

state transitions, 20
weakly connected, 18

communication state transitions, 20–
21

conclusion, 95
concurrency control, 46–47

boundaries, 47
optimistic, 47

conflict detection, 33–34
conflict resolution, 34
conflicts, 61

possible, 28
read/write, 62
write/write, 65

127

INDEX 128

connected, 17, 18
consistency, 39, 40–42

operation level, 40
system level, 41

consistency time bound, 53
contents, 12
contributions, 93
CPU, 14, 15
creating, 57
Cristian’s algorithm, 36
critical set, 36
CTB, see consistency time bound
current working set, 36

deleting, 57
design, see model, the
design goals, 9
desktops, 14
disconnected, 17, 19
durability, 39, 45

environment, 7
test, 74

ETB, see expiration time bound
evaluation, see test & evaluation
evaluation goals, 10
examples, 112–117

bank account, 112–115
blackboard, 116–117
mail reader, 115
make, 115

existing applications, 71
expiration time bound, 61

fault-tolerance, 75
file sharing, 29–30
file sharing semantics, 30–31
file sizes, 30
file types, 30
file usage, 25–31

classification of files, 25
file sharing, 29

file sharing semantics, 30
file sizes, 30
file types, 30
operations on directories, 28
operations on files, 27

fulfillment of goals, 93
full set, 37
fully connected, see connected
future work, 94

goals, 9–11
design, 9
evaluation, 10
fulfillment, 93
implementation, 9
overall, 2
performance, 10

granularity, 31

harddisk, 14, 16
heterogeneous, 13, 14

I’m a lucky guy, 96
implementation goals, 9
implementation, the, 74–84

client/server communication, 76
communication with TACO, 76
fault-tolerance, 75
overview, 80
portability, 75
program flow, 84
system requirements, 74
test environment, 74

inner transactions, 40
introduction, 1–12

AMIGOS, 4
challenges, 3
contents, 12
distributed file service, 7
distributed file system, 7
environment, 7
goals, 9

INDEX 129

mobile computing, 3
motivation, 1
overview, 11
terminology, 11
transactions in mobile comput-

ing, 8
IOTs, see isolation-only transactions
isolation, 39, 42–44
isolation-only transactions, 44

keyboard, 14, 16

laptops, 15
latency, 17
least-recently-used, see LRU
Linux, 13, 16

X-Windows, 16
Little Work, 36
locking, 57–60
LRU, 37

means of communication, see com-
munication

memory, see RAM
MIo-NFS, 14
mobile computers, 13–14

heterogeneous, 13
keyboard, 16
performance, 14
power supply, 16
screen, 16
self-contained, 13
stable storage, 15
vulnerability, 16

mobile computing, 3–4, 13–23
communication, see communi-

cation
computers, see mobile comput-

ers
mobility, 22
summary, 23

mobility, 22

model, the, 50–74
closing, 61
conflicts, 61
creating, 57
deleting, 57
existing applications, 71
features, 65
locking, 57
primitives, 68

file primitives, 68
system primitives, 69
transaction primitives, 70

reading, 52
status, 66
synchronization, 65
system settings, 69
temporary files, 65
writing, 55

modification time bound, 56
motivation, 1–2
MTB, see modification time bound
multi-level consistency, 33

nested transactions, see nesting
nesting (of transactions), 46
networks, 17

ATM, 17
bandwidth, 17
Ethernet, 17
FDDI, 17
GSM, 17
LAN, 17
latency, 17
modem, 17
serial line, 17

NFS, 14
PC-NFS, 14

notebooks, 15

Odyssey, 30
operating system, 13, 16

INDEX 130

operation level consistency, 40
operations on directories, 28–29
operations on files, 27–28
optimistic, 32

concurrency control, 47
optimistic reading, 53
Oracle, 43, 112, 113
OS/2, 13

Workplace Shell, 16
outer transactions, 40
overall goals, 2
overview, 11

implementation, 80

palmtops, 15
partially connected, see weakly con-

nected
PDAs, 15
performance, 14–15
performance goals, 10
Personal Digital Assistants, see PDAs
pessimistic, 31–32
pessimistic reading, 52
portability, 75
power supply, 14, 16–17
primitives, 68

file primitives, 68
system primitives, 69
transaction primitives, 70

priority list, 37
processing power, 14
program, 97–111
program flow, 84, 118

RAM, 14, 15
read/write conflicts, 62–64
reading, 52–54

consistency time bound, 53
optimistic, 53
pessimistic, 52
strict, 53

references, 120–126
replica control, 25–38

caching, 36
file usage, 25
granularity, 31
replication transparency, see repli-

cation transparency
strategies, see replica control strate-

gies
summary, 38
synchronization, 35

replica control strategies, 31–34
conflict detection, 33
conflict resolution, 34
multi-level consistency, 33
optimistic, 32
pessimistic, 31
strict, 32

replication, see replica control
replication transparency, 34–35
restrictions, 11
results, 89

screen, 14, 16
Seer, 14, 37
self-contained, 13
semi-connected, see weakly connected
serial transactions, 44
serialization, see isolation
sockets, 9, 13
stable storage, 15–16

cache size, 15
stationary workstations, see desk-

tops
storage, see stable storage
storage capacity, see harddisk
strict, 32
strict reading, 53
STs, see serial transactions
synchronization, 35–36, 65

Cristian’s algorithm, 36

INDEX 131

system level consistency, 41
system requirements, 74

TACO, 6, 9, 75
communication with, 76
problems with, 92

temporary files, 65
terminology, 11
test & evaluation, 85–92

problems with PeStO, 91
problems with TACO, 92
results, 89
tests, 85

test environment, 74
tests, 85–87

results, 89
transactions, 39–49

concurrency control, 46
boundaries, 47
optimistic, 47

properties, 39–46
consistency, 40
durability, 45
isolation, 42
isolation-only, 44
nesting, 46
serial, 44
serialization, see isolation

summary, 48–49
transactions, inner, 40
transactions, outer, 40
transparency, see replication trans-

parency
Transparent (AMIGOS) Communi-

cation, see TACO

UNIX
Posix, 13
UNIX-clone, 13

user interface, see screen & key-
board

vulnerability, 16

weakly connected, 17, 18–19
Windows95, 13, 16
write/write conflicts, 65
writing, 55–57

modification time bound, 56

	A Mobility-Transparent Model for Consistency
	Abstract
	Keywords
	Preface
	Prerequisites
	A Model for Multi-Level Consistency
	Acknowledgements

	Contents
	Figures
	Tables

	Introduction
	Motivation
	Challenges
	Mobile Computing
	AMIGOS

	A Distributed File System
	Environment
	A Distributed File Service

	Transactions in Mobile Computing
	Goals
	Design
	Implementation
	Performance
	Evaluation
	Restrictions

	Overview
	Terminology
	Contents

	Mobile Computing
	Mobile Computers
	Performance
	Stable Storage
	Vulnerability
	Screen & Keyboard
	Power Supply

	Means of Communication
	Connected
	Weakly Connected
	Disconnected
	Communication State Transitions

	Mobility
	Summary

	Replica Control
	File Usage
	Classification of Files
	Operations on Files
	Operations on Directories
	File Sharing
	File Sizes and Types
	File Sharing Semantics

	Granularity of Replication
	Replica Control Strategies
	Pessimistic
	Strict
	Optimistic
	Multi-Level Consistency
	Conflict Detection
	Conflict Resolution

	Replication transparency
	Synchronization
	Caching
	Summary

	Transactions
	Properties of Transactions
	Consistency
	Isolation
	Durability
	Nesting

	Concurrency Control
	Optimistic Concurrency Control
	Boundaries of Transactions

	Summary

	The Model
	Reading
	Pessimistic Reading
	Optimistic Reading
	Strict Reading
	The Consistency Time Bound

	Writing
	Creating & Deleting
	Locking
	Conflicts
	Read/Write Conflicts
	Write/Write Conflicts

	Other Features
	Temporary Files
	Synchronization
	Status
	More Primitives

	Primitives
	File Primitives
	System Settings & Primitives
	Transaction Primitives

	Existing Applications

	The Implementation
	System Requirements
	Test Environment
	Portability

	Fault-Tolerance
	Client/Server Communication
	Communication with TACO

	Overview of Files and Subroutines
	Program Flow
	Availability

	Test & Evaluation
	Tests
	Results
	Evaluation
	Problems with PeStO
	Problems with TACO

	Conclusions
	Contributions
	Fulfillment of Goals
	Future Work
	Conclusion
	Postscriptum

	Appendices
	A: Program
	B: Examples
	Bank Account
	make
	Mail Reader
	Blackboard

	C: Flow Diagrams
	D: Figures from Chapter 5

