
A Model for Multi-Level Consistency

Michael G. Sørensen
{mgsj@diku.dk}

DIKU, Department of Computer Science, University of Copenhagen

February 28, 1998

Abstract

Recently we have started the implementation of a
distributed file system that supports applications
for mobile computing. It is based on a scheme that
uses time as a consistency measure. By allowing
applications to specify consistency and modifica-
tion time bounds they are enabled to adapt their
behaviour according to the state of their environ-
ment (or user demands). They can relax their con-
sistency requirements as the quality of communica-
tion decreases (higher cost, higher latency, and/or
lower bandwidth) in order to achieve higher avail-
ability or reduce cost, and strengthen them again
when suited. The scheme allows them to utilize any
desired level of optimism or pessimism.

1 Introduction

The advent of mobile computers and the growing
popularity of these have inspired many research ef-
forts to integrate and/or support mobile computers
within existing distributed systems or even build
new ones. The majority of these systems, such
as Bayou [10], Coda [8], Ficus [4], and Little
Work [5] have a priori decided to use optimistic
replica control strategies to achieve high availability
for support of mobile computing, even if conflicting
updates are unavoidable and the use of stale data
is possible. On the other hand (as a bit of an out-
sider) there is MIo-NFS [2] that uses a pessimistic
replica control strategy in order to avoid conflicts,
even if this strategy is overly restrictive and cannot
be expected to result in high availability.

Since some files (or jobs) are more important
than others (to users) and since applications have
different file access patterns, why should they all

be forced to perform perhaps less than optimal due
to the shortcommings of either optimistic or pes-
simistic replication? What if applications them-
selves could decide replication strategy and change
it dynamically, e.g., due to change in quality or cost
of communication or on demand if a user for some
reason wishes to override default behaviour? In
other words, what if applications could adapt their
consistency requirements or demands according to
the current state of the environment? The need for
adaptation, whether on system or application level
(or both), has already been recognized as an im-
portant [3] or even essential [9] capability of mobile
clients (as members of a distributed system).

The work described in this position paper is part
of the AMIGOS [1] project. The subproject has
been nicknamed PeStO for PEssimitic, STrict, and
Optimistic, due to the fact that it—in contrast to
the systems mentioned above—supports different
levels of consistency (and availability). The overall
goal is to support mobile computing by enabling
applications at all times to adapt to their current
environment.

1.1 Environment

The system consist of a single (trusted) stationary
file server that services multiple (untrusted) mobile
clients. For communication we use the socket in-
terface. The types of mobile computers supported
are discussed in Section 1.2. The service provided
is access to shared data (files). The server can be
considered as the true home of the shared files, and
the mobile clients as caching sites as in the tra-
ditional client/server model. The server holds the
primary copy or the first-class replica of the file,
and the clients cache second-class replicas.

1



In our environment, a mobile computer can be ei-
ther connected to (the same network as) the server
or disconnected. The connections can be by use
of a variety of different technologies, such as Eth-
ernet, dial-up telephone line, dial-up wireless com-
munication, see Figure 1. Hence, the communica-
tion bandwidth may vary substantially as does the
cost of using this bandwidth. Mobile clients that
are connected via a fixed network, with high band-
width and low latency (e.g., Ethernet) are said to
be (fully) connected, whereas mobile clients that are
connected via other means are weakly connected.

Figure 1: System Overview

The mobile clients are in contact with the server
on a regular basis, i.e., they do not stay discon-
nected forever and can be said to be permanent
members of the distributed system in which the
server resides. The server has no explicit support
for stationary workstations, but of course, they can
be considered as odd cases of mobile clients, that
never move and always are fully connected.

1.2 Mobile Computers

In our environment mobile computers should be
self-contained, i.e., they should be fully functional
computers, with their own operating system (e.g.,
Windows95, OS/2, or Linux) and applications—
allowing the user to work independently from any
other machines (e.g., servers). The operating sys-
tem chosen is Linux, since it is currently in use on
the mobile computers used in connection with the
AMIGOS project, and it has provision for the use
of sockets. In the long run it could be any operat-

ing system providing a socket abstraction (in C),1

so in this sense the mobile computers supported are
heterogeneous.

One obvious advantage of this choice is that it
eliminates the need for caching system files, as in
Coda [8], Little Work [5], and Seer [6]. This alle-
viates the problem of predicting which system files
that are actually needed, which is a complicated
matter. For example, in Coda [8] a special spy
program is used to track down use of files during
a session and in Seer [6] the problem is solved by
constantly logging file references.

2 The Model

Our model is based on the use of time as a consis-
tency measure. With each cached file is associated:

• A Modification Time (MTCi); the time of the
last update to the file,

– Note: From the subscripts it is made
clear that the replica resides on the Client
(as opposed to on the server), and it is the
i’th replica of the file.

• a Consistency Time (CTi); the time at which
the cached file was known to be consistent with
the primary copy on the server, and

• a Consistency Check Time (CCTi); the time
of the last check for consistency between the
cached file and the primary copy on the server.

If CTi=CCTi then the last check for consistency
was positive, otherwise negative. A consistency
check can be performed simply by comparing the
modification time (MTCi) of the cached file with
the modification time (MTS) of the primary copy
on the server.

With every read (or any other non-mutating op-
eration) must be associated a Consistency Time
Bound (CTB), and with every write (or any other
mutating operation) a Modification Time Bound
(MTB). These can either be given explicitly by the
application or implicitly using some sort of default
value.2

1It could equally well have been Windows and win-
sockets, but we found it best, at first, to stick with the
existing systems.

2We have not quite decided how to go about this, yet!
Different types of applications or files may require different

2



2.1 Reading

Let us imagine a client holding the i’th replica of
a file, f, in the cache with the associated values
<MTCi=8.00,CTi=9.00,CCTi=9.00>. This would
be the result if the file was last updated on the
server at 8.00, and cached by the client in question
at 9.00. At 10.00 (now) the client opens the file for
reading:

open(f,"r",CTB)

If CTB>0 then f must be and remain consistent
(with the server version) within the specified time
bound. For example, with CTB=2 hours (from
now), then f must be guaranteed to be and re-
main consistent until 12.00. In other words, f must
not have been updated on the server between 9.00
(where it was cached) and 10.00 (now), and fur-
thermore, it must not be updated for the next 2
hours. If it has been updated between 9.00 and
10.00 then a new copy of the file is required (for it to
be consistent now). Under all circumstances a read
lock must be obtained (for it to remain consistent
within the time bound). If obtaining a new copy
of the file or a lock on the file (or both) succeeds
then the open succeeds, otherwise it fails. Using
CTB>0 the client is pessimistic. The greater CTB
the more pessimistic.

If, on the other hand, CTB<0 then the client is
satisfied with a file that was consistent sometime
during the period lasting from minimum the time
specified by the time bound (ago) and now. In the
example above, with CTB=−2 hours (from now),
the read succeeds because the file was consistent
sometime within the last two hours, namely one
hour ago (at 9.00). With CTB=− 1

2 hour, a new
consistency check is required because the file cannot
be guaranteed to be consistent half an hour ago (at
9.30). If the file has not been updated since 9.00
then the cached file can be used, otherwise a new
copy of the file is required (in both cases CTi and
CCTi can be updated to 10.00). Using CTB<0 the
client is optimistic. The more negative the CTB
the higher the level of optimism.

CTB=0 requires that the file is consistent now,
but cannot be guaranteed to remain consistent. By
using this CTB the client is strict in the sense that
the file opened should be guaranteed to be consis-
tent with the latest update of the primary copy

default values.

(at the time of the open). The correspondance be-
tween the consistency time bound and the level of
pessimism or optimism is depicted in Figure 2.

Figure 2:

2.2 Writing

Establishing a connection for every write ensures
strict consistency, but cannot be expected to per-
form well in a mobile computing environment.

The MTB associated with an open for writing is
the “mutating” counterpart of the CTB associated
with an open for reading:

open(f,"w",MTB).

A MTB<0 means that the writes (done locally) are
delayed for a maximum of the specified time bound
before written to the server. The delay increases
the possibility of write-write conflicts, thus mak-
ing the write operation increasingly optimistic the
more negative the MTB.

Figure 3:

A write open with a MTB=0 assures that the
update is propagated to the server as fast as pos-
sible, and a MTB>0 demands the file to be write
locked, see Figure 3. In both cases a connection
to the server may have to be established (if it has
not already been established or the file is already
locked).

2.3 Conflicts

Since optimistic operations are allowed, conflict sit-
uations are unavoidable. In the following we imag-

3



ine two machines (or two different processes on the
same machine)—P1 and P2—having copies of a file
(the newest version) in their caches, and no other
machines or processes are accessing the file.

Let us consider a case of concurrent writing; as-
sume for the sake of the argument that the order of
operations are: P1 opens for writing, P2 opens for
writing, P1 and P2 close for writing (in an undeter-
mined order). Table 1 shows the possible conflicts.

Table 1: Write/write conflicts
P1 writing

P2 writing optimistic strict pessimistic
optimistic FS,SF FS,SF P2 fails

strict FS,SF FS,SF P2 fails
pessimistic P1 fails P1 fails P2 fails
FS,SF stands for First Succeeds, Second Fails.

Note: When P1 or P2 fails, it may not result in
write/write conflict, since the open rather than the
close might fail!

What is to be done about write/write con-
flicts? Some conflicts are more serious than oth-
ers, and some are easy to fix—but that is totally
application-specific, thus conflicts are best handled
by applications. How do we inform the applications
of conflicts? Write/write conflicts are detected af-
ter the file has been closed, either immediately af-
ter or after a while, depending on the MTB. We
choose to let the close operation return SUCCESS
(if no conflicts occur), FAILURE (contraversely), or
TIMEOUT. If it takes some amount of time before
the updates are propagated to the server, then it is
impossible to report success or failure immediately.
How long an application can wait for the close to
“finish” is also application-specific, so we will let
the applications decide. With each close should
be associated a close expiration time (CET ≥ 0):

close(f,CET)

The close will not return until the updates are
propagated succesfully back to the server, or a con-
flict has been detected, or it times out (according
to the CET ). With CET=0 the call will return
immediately, and with a very large CET the call
returns only when the status (success or failure) of
the close has been determined.

If the close fails or times out then the applica-
tion can inform the user, rename the cached file (us-
ing a special operation), re-execute the commands,
or do whatever steps it deems necessary!

3 Present & Future Work

In order to use communication bandwith optimally
and to provide application with the ability to adapt
their consistency requirements the implementation
will be based on the TACO layer [3]. The file sys-
tem will use the adaptation facilities provided by
TACO, which includes specification of Quality of
Service parameters when creating and maintain-
ing a connection, and monitoring of changes in link
quality.

At the time of writing the implementation had
only just begun, thus we cannot report to you any
results. We plan to have a full working implemen-
tation with test results no later than at the end of
the year!

New (or ported) applications that utilize the new
facilities need to be written and their performance
weighted against the performance of existing appli-
cations before we are able to draw conclusions as
to the viability of the model. Furthermore, it will
be interesting to study the effects of applications
or users operating on the same set of files using
different levels of consistency.

Another matter also needs to be resolved; to
what level are the applications expected to make
their own decisions? Should the system ignore be-
haviour that seems irrational (e.g., using high de-
gree of optimism, even though fully connected) un-
der the assumption that applications know what
they are doing, or should the system try to assist
the applications as much as possible?

In the near future we hope to expand the model
with a transactional facility, that enable applica-
tions or users to group operations into working
units with the “all-or-nothing” property. Which
decisions to make in order to provide an efficient
and simple abstraction upon the proposed model
for consistency remains (for now) nothing more
than an interesting question. This will also make
way for detection of read/write conflicts.

There are issues that we have not yet begun dis-
cussing but will have to deal with sooner or later.
These issues include security (e.g., authentication

4



and encryption), migration (mobility, i.e., crossing
network and administration boundaries), and net-
work optimisation (header compression, congestion
control and avoidance). By basing our implemen-
tation on TACO, some of these issues are solved
with the evolution of TACO.

Acknowledgements

The basic ideas for the model presented in this ar-
ticle stem from the report “Transactions in Mobile
Computing” [7] by Jeppe Damkjær Nielsen.

Birger Andersen has provided many fruitful com-
ments on all the earlier drafts of this article —
Thanks!

References

[1] The AMIGOS Project:
<http://www.diku.dk/distlab/amigos/>.

[2] Victor P. Guedes & Francisco Moura:
Replica Control in MIo-NFS, ECOOP’95
Workshop on Mobility and Replication,
<ftp://ftp.diku.dk/diku/distlab/amigos/
mionfs.ps.gz>.

[3] Jørgen Sværke Hansen & Torben Reich: Semi-
Connected TCP/IP in a Mobile Computing En-
vironment, Department of Computer Science,
University of Copenhagen, Masters Thesis in
Computer Science, DIKU Project no. 95-6-11,
1996.

[4] John S. Heidemann et al.: Primarily Dis-
connected Operation: Experiences with Ficus,
Proc. 2nd IEEE Workshop on Management of
Replicated Data, November 1992.

[5] Peter Honeymann et al.: The Little Work
Project, Proc. 3rd IEEE Workshop on Worksta-
tion Operating Systems, April 1992.

[6] Geoffrey H. Kuenning: The Design of the Seer
Predictive Caching System, IEEE Workshop on
Mobile Computing Systems and Applications,
1994.

[7] Jeppe Damkjær Nielsen: Transactions in Mo-
bile Computing, Department of Computer Sci-

ence, University of Copenhagen, DIKU Project
no. 95-2-11, 1995.

[8] M. Satyanarayanan et al.: Experience with
Disconnected Operation in a Mobile Comput-
ing Environment, Proc. USENIX Symp. on Mo-
bile & Location-Independent Computing, Au-
gust 1993.

[9] M. Satyanarayanan et al.: Application-Aware
Adaptation for Mobile Computing, School of
Computer Sciencce, Carnegie Mellon Univer-
sity, CMU-CS-94-183, July 1994.

[10] Douglas B. Terry et al.: Managing Update
Conflicts in Bayou, a Weakly Connected Repli-
cated Storage System, 15th ACM Symposium
on Operating Systems Principles, December
1995.

5


